精英家教网 > 高中数学 > 题目详情
2.函数f(x)=$\frac{\sqrt{4x-{x}^{2}}}{lg({2}^{x}-1)}$的定义域用区间表示为(0,1)∪(1,4].

分析 由$\left\{\begin{array}{l}4x-{x}^{2}≥0\\{2}^{x}-1>0\\{2}^{x}-1≠1\end{array}\right.$解得x的取值范围,可得函数的定义域.

解答 解:由$\left\{\begin{array}{l}4x-{x}^{2}≥0\\{2}^{x}-1>0\\{2}^{x}-1≠1\end{array}\right.$得:
x∈(0,1)∪(1,4],
故函数f(x)=$\frac{\sqrt{4x-{x}^{2}}}{lg({2}^{x}-1)}$的定义域为:(0,1)∪(1,4],
故答案为:(0,1)∪(1,4]

点评 本题考查的知识点是函数是定义域,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.若函数y=$\frac{\sqrt{-{x}^{2}-2x+3}}{x-1}$的定义域为A,函数y=log2x,x∈[$\frac{1}{2}$,8]的值域为B.
(1)求A∪B,(∁RA)∩B;
(2)若C={x|x<a},A∩C≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an},a${\;}_{n}=(-1)^{n+1}\frac{1}{n}$,其前n项和为Sn,求证:S${\;}_{2n}<\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=$\frac{{4x}^{2}+x}{{2x}^{2}+1}$.
(1)求函数f(x)的解析式,并确定f(x)的单调区间;
(2)若不等式f(kx2)-f(x-x2-2)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.关于x的不等式($\frac{1}{2}$)2x≤2-1-x的解集为A,函数f(x)是R上的增函数,且经过(-3,-1)和(1,2)两点,集合B={x|f(x)<-1或f(x)>2}.
(1)求集合A;
(2)求集合B;
(3)若x∈A且a>1,求函数h(x)=loga(a2x)•loga(ax)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{3}$sin(2ωx-$\frac{π}{3}$)+b,且函数的对称中心到对称轴的最小距离为$\frac{π}{4}$,当x∈[0,$\frac{π}{3}$]时,f(x)的最大值为1
(1)求函数f(x)的解析式
(2)若f(x)-3≤m≤f(x)+3在x∈[0,$\frac{π}{3}$]上恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.以下结论:①$\overrightarrow{a}$•$\overrightarrow{b}$∈R,而($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$∉R;②$\overrightarrow{AB}$+$\overrightarrow{BC}$-$\overrightarrow{AC}$=0③$\overrightarrow{a}$,$\overrightarrow{b}$夹角($\overrightarrow{a}$,$\overrightarrow{b}$)=θ,则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为|$\overrightarrow{b}$|cosθ;
④已知$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$为非零向量,且两两不共线,若($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=($\overrightarrow{b}$•$\overrightarrow{c}$)•$\overrightarrow{a}$,则$\overrightarrow{a}$与$\overrightarrow{c}$平行;正确答案的序号的有①④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示平行四边形AOBD中,设向量$\overrightarrow{OA}$=a,$\overrightarrow{OB}$=b又$\overrightarrow{BM}$=$\frac{1}{3}$$\overrightarrow{BC}$,$\overrightarrow{CN}$=$\frac{1}{3}$$\overrightarrow{CD}$,用a,b表示$\overrightarrow{OM}$、$\overrightarrow{ON}$、$\overrightarrow{MN}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列结论正确的个数是(  )
①已知复数z=i(1-i),z在复平面内对应的点位于第四象限;
②不等式x-2y+6>0表示的平面区域是直线x-2y+6=0的右下方;
③命题p:“?x0∈R,x${\;}_{0}^{2}$-x0-1>0”的否定?p:“?x∈R,x2-x-1≤0”.
A.3B.2C.1D.0

查看答案和解析>>

同步练习册答案