精英家教网 > 高中数学 > 题目详情
12.下列结论正确的个数是(  )
①已知复数z=i(1-i),z在复平面内对应的点位于第四象限;
②不等式x-2y+6>0表示的平面区域是直线x-2y+6=0的右下方;
③命题p:“?x0∈R,x${\;}_{0}^{2}$-x0-1>0”的否定?p:“?x∈R,x2-x-1≤0”.
A.3B.2C.1D.0

分析 ①利用复数代数形式的乘法运算求出z所对应的点的坐标判断;
②画出图形,取特殊点代入判断;
③直接写出命题的否定判断.

解答 解:①由z=i(1-i)=1+i,得z在复平面内对应的点的坐标为(1,1),位于第一象限,∴①错误;
②如图,把O(0,0)代入不等式x-2y+6>0成立,∴不等式x-2y+6>0表示的平面区域与O(0,0)同侧,
不等式x-2y+6>0表示的平面区域是直线x-2y+6=0的右下方,∴②正确;
③命题p:“?x0∈R,x${\;}_{0}^{2}$-x0-1>0”的否定?p:“?x∈R,x2-x-1≤0”,正确.
∴正确命题的个数为2个.
故选:B.

点评 本题考查命题的真假判断与应用,考查了二元一次不等式表示的平面区域,考查了特称命题的否定,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\frac{\sqrt{4x-{x}^{2}}}{lg({2}^{x}-1)}$的定义域用区间表示为(0,1)∪(1,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在0到2π得范围内,与角$\frac{22π}{5}$终边相同的角为(  )
A.$\frac{2π}{5}$B.$\frac{3π}{5}$C.$\frac{4π}{5}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax,x≥0}\\{b{x}^{2}-3x,x<0}\end{array}\right.$为奇函数,则不等式f(x)<4的解集为(  )
A.(-1,1)B.(-4,4)C.[-1,+∞)D.(-∞,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.6人站成一排,甲、乙两个人不相邻的排法种数为(  )
A.120B.240C.360D.480

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知二项式(${(\root{3}{x}-\frac{1}{{2\root{3}{x}}})^n}$的展开式中,前三项系数的绝对值成等差数列.
(1)求展开式的第三项;
(2)求二项式系数最大的项
(3)求二项展开式的二项式系数和以及其所有项的系数和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角平面坐标系中,二次函数f(x)过定点(-1,3),顶点坐标为(0,2);正比例函数g(x)的图象恰为一、三象限的角平分线.若函数F(x)=af(x)-g(x),其中a为常实数.
(1)求函数F(x);
(2)若a>0,设F(x)在区间[1,2]上的最小值为G(a),求G(a)的表达式;
(3)在(2)的条件下,若G(a)>m2-2tm-5对所有的a∈(0,+∞),t∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{{x}^{2}-2x+1,x>0}\end{array}\right.$,若关于x的方程f2(x)-af(x)=0恰有5个不同的实数解,则a的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某市A地到B地的电话线路发生故障,这是一条10km长的线路,每隔50m有一根电线杆,如何迅速查出故障所在?

查看答案和解析>>

同步练习册答案