精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax,x≥0}\\{b{x}^{2}-3x,x<0}\end{array}\right.$为奇函数,则不等式f(x)<4的解集为(  )
A.(-1,1)B.(-4,4)C.[-1,+∞)D.(-∞,4)

分析 根据函数奇偶性的定义,求出a,b,即可得到结论

解答 解:若x>0,则-x<0,
则f(-x)=bx2+3x,
∵f(x)是奇函数,∴f(-x)=-f(x),
即bx2+3x=-x2-ax,
则b=-1,a=-3,
即f(x)=$\left\{\begin{array}{l}{{x}^{2}-3x,x≥0}\\{-{x}^{2}-3x,x<0}\end{array}\right.$,
若x≥0,则不等式f(x)<4等价x2-3x<4,即x2-3x-4<0,
解得-1<x<4,此时0≤x<4,
若x<0,不等式f(x)<4等价-x2-3x<4,即x2+3x+4>0,
此时不等式恒成立,
综上x<4.
即不等式的解集为(-∞,4).
故选:D.

点评 本题主要考查不等式的求解,根据函数奇偶性的性质求出函数的解析式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=$\frac{{4x}^{2}+x}{{2x}^{2}+1}$.
(1)求函数f(x)的解析式,并确定f(x)的单调区间;
(2)若不等式f(kx2)-f(x-x2-2)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示平行四边形AOBD中,设向量$\overrightarrow{OA}$=a,$\overrightarrow{OB}$=b又$\overrightarrow{BM}$=$\frac{1}{3}$$\overrightarrow{BC}$,$\overrightarrow{CN}$=$\frac{1}{3}$$\overrightarrow{CD}$,用a,b表示$\overrightarrow{OM}$、$\overrightarrow{ON}$、$\overrightarrow{MN}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.计算$arcsin\frac{{\sqrt{2}}}{2}$+arctan(-1)+$arccos(-\frac{{\sqrt{3}}}{2})$的值为(  )
A.-$\frac{π}{3}$B.-$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知方程x2-px+q=0(p>0,q>0)有两个不同的根x1,x2,且x1,x2,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p×q 的值等于20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过原点且倾斜角为60°的直线被圆(x-2)2+y2=4所截得的弦长为(  )
A.$\sqrt{3}$B.2C.$\sqrt{6}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列结论正确的个数是(  )
①已知复数z=i(1-i),z在复平面内对应的点位于第四象限;
②不等式x-2y+6>0表示的平面区域是直线x-2y+6=0的右下方;
③命题p:“?x0∈R,x${\;}_{0}^{2}$-x0-1>0”的否定?p:“?x∈R,x2-x-1≤0”.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=lnx+2x-6的零点在区间(a,a+1),a∈Z内,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1的左,右焦点分别为F1,F2,在双曲线的右支存在一点P,使PF1=3PF2,求点P的坐标.

查看答案和解析>>

同步练习册答案