【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加.为了制定提升农民年收入、实现2020年脱贫的工作计划,该地扶贫办统计了2019年50位农民的年收入并制成如下频率分布直方图:
![]()
(1)根据频率分布直方图,估计50位农民的年平均收入
元(单位:千元)(同一组数据用该组数据区间的中点值表示);
(2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布
,其中
近似为年平均收入
,
近似为样本方差
,经计算得
,利用该正态分布,求:
(i)在扶贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?
(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?
附参考数据:
,若随机变量X服从正态分布
,则
,
,
.
【答案】(1)17.40千元;(2)(i)14.77千元.(ii)978人.
【解析】
(1)求解每一组数据的组中值与频率的乘积,将结果相加即可得到对应的
;
(2)(i)根据
的数值判断出年收入的取值范围,从而可计算出最低年收入;
(ii)根据
的数值判断出每个农民年收入不少于
千元的概率,然后根据二项分布的概率计算公式计算出“恰有
个农民年收入不少于
”中
的最大值即可.
解:(1)
千元
故估计50位农民的年平均收入
为17.40千元;
(2)由题意知![]()
(i)
,
所以
时,满足题意,
即最低年收入大约为14.77千元.
(ii)由
,
每个农民的年收入不少于12.14千元的事件的概率为0.9773,
记1000个农民的年收入不少于12.14千元的人数为
,
则
,其中
,
于是恰好有k个农民的年收入不少于12.14千元的事件概率为
,
从而由![]()
得
,而
,
所以,当
时,
,
当
时,
,
由此可知,在所走访的1000位农民中,年收入不少于12.14千元的人数最有可能是978人.
科目:高中数学 来源: 题型:
【题目】从某居民区随机抽取10个家庭,获得第
个家庭的月收入
(单位:千元)与月储蓄
(单位:千元)的数据资料,算得
,
,
, ![]()
(1).求家庭的月储蓄
对月收入
的线性回归方程
;
(2).判断变量
与
之间的正相关还是负相关;
(3).若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:回归直线的斜率和截距的最小二乘估计公式分别为
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下四个说法:
①残差点分布的带状区域的宽度越窄相关指数越小
②在刻画回归模型的拟合效果时,相关指数
的值越大,说明拟合的效果越好;
③在回归直线方程
中,当解释变量
每增加一个单位时,预报变量
平均增加
个单位;
④对分类变量
与
,若它们的随机变量
的观测值
越小,则判断“
与
有关系”的把握程度越大.
其中正确的说法是![]()
A. ①④B. ②④C. ①③D. ②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题,其中错误命题的个数为( )
(1)直线
与平面
不平行,则
与平面
内的所有直线都不平行;
(2)直线
与平面
不垂直,则
与平面
内的所有直线都不垂直;
(3)异面直线
、
不垂直,则过
的任何平面与
都不垂直;
(4)若直线
和
共面,直线
和
共面,则
和
共面
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解全市统考情况,从所有参加考试的考生中抽取4000名考生的成绩,频率分布直方图如下图所示.
![]()
(1)求这4000名考生的半均成绩
(同一组中数据用该组区间中点作代表);
(2)由直方图可认为考生考试成绩z服从正态分布
,其中
分别取考生的平均成绩
和考生成绩的方差
,那么抽取的4000名考生成绩超过84.81分(含84.81分)的人数估计有多少人?
(3)如果用抽取的考生成绩的情况来估计全市考生的成绩情况,现从全市考生中随机抽取4名考生,记成绩不超过84.81分的考生人数为
,求
.(精确到0.001)
附:①
;
②
,则
;
③
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
(
为参数),直
(
为参数),以
为极点,
轴正半轴为极轴建立极坐标系.
(1)求
与
的极坐标方程;
(2)当
时,直线
与
相交于
两点;过点
作
的垂线
,
与曲线
的另一个交点为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用一个平行于圆锥底面的平面去截圆锥,截得圆台的母线长为
,两底面面积分别为
和
.求:
(1)圆台的高;
(2)圆台的体积;
(3)截得此圆台的圆锥的表面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(I)若函数
在区间
上不是单调函数,求实数
的取值范围;
(II)是否存在实数
,使得函数
图像与直线
有两个交点?若存在,求出所有
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com