【题目】在直角坐标系
中,曲线
(
为参数),直
(
为参数),以
为极点,
轴正半轴为极轴建立极坐标系.
(1)求
与
的极坐标方程;
(2)当
时,直线
与
相交于
两点;过点
作
的垂线
,
与曲线
的另一个交点为
,求
的最大值.
科目:高中数学 来源: 题型:
【题目】下面四个命题:
①
在定义域上单调递增;
②若锐角
,
满足
,则
;
③
是定义在
上的偶函数,且在
上是增函数,若
,则
;
④函数
的一个对称中心是
;
其中真命题的序号为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)当
时,求函数
的零点;
(2)当
,求函数
在
上的最大值;
(3)对于给定的正数a,有一个最大的正数
,使
时,都有
,试求出这个正数
,并求它的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加.为了制定提升农民年收入、实现2020年脱贫的工作计划,该地扶贫办统计了2019年50位农民的年收入并制成如下频率分布直方图:
![]()
(1)根据频率分布直方图,估计50位农民的年平均收入
元(单位:千元)(同一组数据用该组数据区间的中点值表示);
(2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布
,其中
近似为年平均收入
,
近似为样本方差
,经计算得
,利用该正态分布,求:
(i)在扶贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?
(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?
附参考数据:
,若随机变量X服从正态分布
,则
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数
在
处取得极大值或极小值,则称
为函数
的极值点.设函数
,
,a,b,k
R.
(1)若
为
在x=1处的切线.①当
有两个极值点
,
,且满足
·
=1时,求b的值及a的取值范围;②当函数
与
的图象只有一个交点,求a的值;
(2)若对满足“函数
与
的图象总有三个交点P,Q,R”的任意突数k,都有PQ=QR成立,求a,b,k满足的条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形.现随机地向大正方形内部区域投掷飞镖,若飞镖落在小正方形区域的概率是
,则直角三角形的两条直角边长的比是(长边:短边)( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com