精英家教网 > 高中数学 > 题目详情
17.已知(2-$\sqrt{3}$x)3=a0+a1x+a2x2+a3x3,则(a0+a22-(a1+a32=1.

分析 构造函数,利用赋值法,通过平方差法,化简求解即可.

解答 解:令f(x)=(2-$\sqrt{3}$x)3=a0+a1x+a2x2+a3x3
则f(1)=a0+a1+a2+a3=(2-$\sqrt{3}$)3
f(-1)=a0-a1+a2-a3=(2+$\sqrt{3}$)3
(a0+a22-(a1+a32=(a0+a1+a2+a3)(a0-a1+a2-a3)=(2-$\sqrt{3}$)3(2+$\sqrt{3}$)3=1.
故答案为:1.

点评 本题考查二项式定理的应用,考查赋值法以及平方差法的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.如图,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,|$\overrightarrow{OC}$|=$\sqrt{3}$,∠AOB=60°,$\overrightarrow{OB}⊥\overrightarrow{OC}$,设$\overrightarrow{OC}=x\overrightarrow{OA}$+y$\overrightarrow{OB}$,则x,y的值分别为(  )
A.x=-2,y=-1B.x=-2,y=1C.x=2,y=-1D.x=2,y=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系xOy中,设D是满足x≥0,y≥0,x+y+[x]+[y]≤19的点(x,y)形成的区域(其中[x]是不超过x的最大整数).则区域D中整点的个数为55.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知log23=a,3b=7,求log${\;}_{3\sqrt{7}}$2$\sqrt{21}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数y=2sin($\frac{π}{3}$-x)
(1)求单调区间;
(2)求最大值及x值;
(3)求最小值及x值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知异面直线a,b成60°角,A为空间中一点,则过A与a,b都成45°角的平面(  )
A.有且只有一个B.有且只有两个C.有且只有三个D.有且只有四个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a∈R,且(1+ai)2i为正实数,则a=(  )
A.0B.-1C.±1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点P(2,1),且两焦点与短轴的一个端点构成等腰直角三角形.
(1)求椭圆的方程;
(2)过点P作椭圆两条互相垂直的弦PA,PB分别与椭圆交于点A,B,问:直线AB是否经过定点T?若经过,求出点T的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知an=$\frac{n-4}{n-\frac{9}{2}}$(n∈N+),求数列{an}中的最小项和最大项.

查看答案和解析>>

同步练习册答案