精英家教网 > 高中数学 > 题目详情
9.设a∈R,且(1+ai)2i为正实数,则a=(  )
A.0B.-1C.±1D.1

分析 由题意可知虚部等于0,实部大于0,可求a的值.

解答 解:(1+ai)2i=(1-a2)i+2ai2=(1-a2)i-2a,
∵它是正实数,
∴$\left\{\begin{array}{l}{-2a>0}\\{1-{a}^{2}=0}\end{array}\right.$,
则a=-1.
故选:B.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设$\overrightarrow{i}$,$\overrightarrow{j}$分别为直角坐标系中Ox,Oy正方向上的单位向量,设$\overrightarrow{OA}$=-2$\overrightarrow{i}$+m$\overrightarrow{j}$,$\overrightarrow{OB}$=n$\overrightarrow{i}$+$\overrightarrow{j}$,$\overrightarrow{OC}$=5$\overrightarrow{i}$-$\overrightarrow{j}$,若点A,B,C在一条直线上,且m-2n=0,则m的值是(  )
A.1或2B.1或3C.2或3D.3或6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆方程为$\frac{1}{9}{x^2}+{y^2}$=1,过左焦点作倾斜角为$\frac{π}{6}$的直线交椭圆于A,B两点,
(1)求弦AB的长;
(2)求△ABO的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知(2-$\sqrt{3}$x)3=a0+a1x+a2x2+a3x3,则(a0+a22-(a1+a32=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C的中心在原点,焦点在x轴上,离心率为$\frac{\sqrt{3}}{2}$,它的一个顶点恰好是抛物线x2=4$\sqrt{2}$y的焦点.
(1)求椭圆C的方程;
(2)直线x=2与椭圆交于P,Q两点,P点位于第一象限,A,B是椭圆上位于直线x=2两侧的动点.当点A,B运动时,满足PA与PB的斜率之和为0,问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为1.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.以直角坐标系的原点为极点,x轴的正半轴为极轴且单位长度一致建立极坐标系.已知直线l的参数方程为$\left\{\begin{array}{l}x=t\\ y=t-a\end{array}$(t为参数),圆C的极坐标方程为ρ=2cosθ,若直线l经过圆C的圆心,则常数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设F1,F2分别为椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右两个焦点,点$A(1,\;\;\frac{3}{2})$在椭圆上,且点A到F1,F2两点的距离之和等于4.
(1)求椭圆的方程.
(2)若K为椭圆C上的一点,且∠F1KF2=30°,求△F1KF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,已知b=asinC,c=asinB,试判断△ABC的形状.

查看答案和解析>>

同步练习册答案