精英家教网 > 高中数学 > 题目详情
数列{an}的前n项和为Sn,满足:a1=1,Sn-2Sn-1=1,n∈N*且n≥2.
(1)求证:数列{an}是等比数列;
(2)若cn=
n
an
(n∈N*),求数列{cn}的前n项和Tn
考点:数列的求和,等比关系的确定
专题:等差数列与等比数列
分析:(1)利用等比数列的定义证明即可;
(2)由(1)得an=2n-1,所以cn=n×(
1
2
)n-1
,利用错误相减法对数列求和即得结论.
解答: 解:(1)当n≥2时,由
Sn-2Sn-1=1
Sn+1-2Sn=1
两式相减得an+1-2an=0,即an+1=2an
所以
a3
a2
=
a4
a3
=
a5
a4
=…=2
(4分)
又当n=2时,S2-2S1=1,所以S2=1+2=3,a2=2,
a2
a1
=2
(6分)
所以
an+1
an
=2(n∈N*)
,所以数列{an}是以1为首项,2为公比的等比数列.(7分)
(2)由(1)得an=2n-1,所以cn=n×(
1
2
)n-1
,(8分)
Tn=1×(
1
2
)0+2×(
1
2
)1+3×(
1
2
)2+4×(
1
2
)3+…+(n-1)×(
1
2
)n-2+n×(
1
2
)n-1
,则
1
2
Tn=1×(
1
2
)1+2×(
1
2
)2+3×(
1
2
)3+4×(
1
2
)4+…+(n-1)×(
1
2
)n-1+n×(
1
2
)n

两式相减得,
1
2
Tn=(
1
2
)0+(
1
2
)1+(
1
2
)2+(
1
2
)3+…+(
1
2
)n-1-n×(
1
2
)n=
1-(
1
2
)
n
1-
1
2
-n×(
1
2
)n=2-(n+2)×(
1
2
)n

所以Tn=4-(n+2)×(
1
2
)n-1
(14分)
点评:本题主要考查利用定义证明数列是等比数列的方法及错误相减法求数列的和,考查学生的运算能力,属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M={2,3,4},N={0,2,3,5},则M∩N=(  )
A、{0,2}
B、{2,3}
C、{3,4}
D、{3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈R,i是虚数单位,若a+i=2-bi,则(a+bi)2=(  )
A、3-4iB、3+4i
C、4-3iD、4+3i

查看答案和解析>>

科目:高中数学 来源: 题型:

若以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,则线段y=1-x(0≤x≤1)的极坐标方程为(  )
A、ρ=
1
cosθ+sinθ
,0≤θ≤
π
2
B、ρ=
1
cosθ+sinθ
,0≤θ≤
π
4
C、ρ=cosθ+sinθ,0≤θ≤
π
2
D、ρ=cosθ+sinθ,0≤θ≤
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是圆x2+y2=1上的一动点,则P点到直线l:x+y-2
2
=0的距离的最大值为(  )
A、1
B、3
C、2
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}的各项均为正数的数列,其前n项和为Sn,若2Sn=an2+an(n≥1),且a1、a3、a7成等比数列.
(1)求{an}的通项公式;
(2)令bn=2 a,数列{bn}的前n项和为Tn,证明:Tn+4=2b.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,
m
=(sinA,sinB-sinC),
n
=(a-
3
b,b+c),且
m
n

(1)求角C的值;
(2)若△ABC为锐角三角形,且c=1,求
3
a-b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

己知数列{an}满足a1=1,a2n-a2n-1=2,a2n+1-a2n=3n(n∈N*).
(I)计算:(a3-a1)+(a5-a3),并求a5
(Ⅱ)求a2n-1(用含n的式子表示);
(Ⅲ)记数列{an}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC中,acosC,bcosB,ccosA成等差数列,则∠B=
 

查看答案和解析>>

同步练习册答案