精英家教网 > 高中数学 > 题目详情
某单位为了解用电量y度与气温x°C之间的关系,随机统计了某4填的用电量与当天气温,并制作了对照表:
气温(°C)181211-1
用电量(度)24343765
由表中数据得线性回归方程
?
y
=-2x+a,预测当气温-3°C时,用电量的度数约为
 
考点:线性回归方程
专题:计算题,概率与统计
分析:根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出a的值,可得线性回归方程,根据所给的x的值,代入线性回归方程,预报要销售的件数.
解答: 解:由表格得(
.
x
.
y
)为:(10,40),
代入
?
y
=-2x+a,∴40=10×(-2)+a,
解得:a=60,
?
y
=-2x+60,
当x=-3时,
?
y
=-2×(-3)+60=66.
故答案为:66.
点评:本题考查线性回归方程,考查最小二乘法的应用,考查利用线性回归方程预报变量的值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=alnx,a∈R.
(Ⅰ)若曲线y=f(x)与曲线g(x)=
x
在交点处有共同的切线,求a的值;
(Ⅱ)若对任意x∈[1,e],都有f(x)≥-x2+(a+2)x恒成立,求a的取值范围;
(Ⅲ)在(I)的条件下,求证:xf(x)>
xe1-x
2
-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P,A,B,C,D是球O表面上的点,PA⊥平面ABCD,四边形ABCD是边长为2
2
的正方形,若PA=2
7
,则三棱锥B-AOP的体积VB-AOP=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足:f(m+n)=f(m)f(n),f(1)=3,则
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+
f2(4)+f(8)
f(7)
 的值等于(  )
A、36B、24C、18D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0)的焦点为F,点Q是抛物线C上一点且Q的纵坐标为4,点Q到焦点F的距离为5.
(Ⅰ)求抛物线方程;
(Ⅱ)已知p<8,过点M(5,-2)任作一条直线与抛物线C相交于点A,B,试问在抛物线C上是否存在点E,使得EA⊥EB总成立?若存在,求出点E的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+4)=f(x)+2f(2),若函数y=f(x-1)的图象关于直线x=1对称,且f(3)=2,则f(2015)等于(  )
A、2B、3C、4D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

某城市出租车收费标准如下:①起步价3km(含3km)为10元;②超过3km以外的路程按2元/km收费;③不足1km按1km计费.
(1)试写出收费y元与x(km)(0<x≤5)之间的函数关系式;
(2)若某人乘出租车花了24元钱,求此人乘车里程xkm的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,两块直角三角板拼在一起,已知∠ABC=45°,∠BCD=60°.若记
AB
=
a
AC
=
b
,试用
a
b
表示向量
CD
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn+
1
3
an=1(n∈N+).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log4(1-Sn+1)(n∈N+),Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求使Tn
503
1007
成立的最小的正整数n的值.

查看答案和解析>>

同步练习册答案