精英家教网 > 高中数学 > 题目详情
已知函数f(x)满足:f(m+n)=f(m)f(n),f(1)=3,则
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+
f2(4)+f(8)
f(7)
 的值等于(  )
A、36B、24C、18D、12
考点:抽象函数及其应用
专题:计算题,函数的性质及应用
分析:应从通项入手分析,由f(m+n)=f(m)f(n),f(1)=3,得f(n)=3n,代入计算结果可求.
解答: 解:因为f(m+n)=f(m)f(n),f(1)=3,
所以f(2)=f(1+1)=f(1)f(1)=f2(1)=32
f(3)=f(2+1)=f(2)f(1)=32×3=33
…,以此类推得f(n)=3n
所以原式=
9+9
3
+
81+81
27
+6+6=24.
故选:B.
点评:本题考查了抽象函数的条件下的归纳推理问题,一般是从通项入手加以分析.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x>0时,(x-1)f′(x)<0,若△ABC是锐角三角形,则一定成立的是(  )
A、f(sinA)>f(cosB)
B、f(sinA)<f(cosB)
C、f(sinA)>f(sinB)
D、f(cosA)>f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)如图,边长为2的正方形ABCD和正方形ABEF所在的面所成角为60°,M和N分别是AC和BF上的点,且AM=FN,求线段MN长的取值范围(  )
A、[0.5,2]
B、[1.5,2]
C、[
2
,2]
D、[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

sin570°=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项全不为零的数列{ak}的前k项和为Sk,且Sk=
1
2
akak+1(k∈
N*),其中a1=1.
(1)求数列{ak}的通项公式;
(2)集合M={x|x=[
a
2
k
2012
],1≤ak≤2011,k∈N}
,其中[x]表示不大于x的最大整数,求集合M的元素个数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为(  )
A、3000B、3300
C、3500D、4000

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位为了解用电量y度与气温x°C之间的关系,随机统计了某4填的用电量与当天气温,并制作了对照表:
气温(°C)181211-1
用电量(度)24343765
由表中数据得线性回归方程
?
y
=-2x+a,预测当气温-3°C时,用电量的度数约为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域和值域均为区间G,则称区间G为函数f(x)的“管控区间”.
(1)求函数f(x)=x2-2x形如[a,+∞)(a∈R)的“管控区间”;
(2)函数g(x)=|1-
1
x
|(x>0)是否存在形如[a,b]的“管控区间”,若存在,求出实数a、b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=n2
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记数列{
1
anan+1
}的前n项和为Tn,若对任意的n∈N*,Tn<m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案