精英家教网 > 高中数学 > 题目详情
斜率为3的直线经过抛物线x2=8y的焦点,且与抛物线相交于A,B两点,求线段AB的长.
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设直线l的倾斜角为α,则l与y轴的夹角θ=90°-α,
1
tanθ
=tanα=2,sinθ=
3
10
,由此能求出|AB|.
解答: 解:设直线l的倾斜角为α,则l与y轴的夹角θ=90°-α,
1
tanθ
=tanα=3,
∴sinθ=
3
10

∴|AB|=
8
sin2θ
=
80
9
点评:本题考查抛物线的焦点弦的求法,解题时要注意公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的焦点F1、F2在x轴上,它与y轴的一个交点为P,且△PF1F2为正三角形,且椭圆上的点与焦点的最短距离为
3
,则椭圆的方程为(  )
A、
x2
12
+
y2
9
=1
B、
x2
25
+
y2
9
=1
C、
x2
40
+
y2
10
=1
D、
y2
25
+
4x2
25
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=4,an+1-4an=4n(n∈N*),数列{bn}满足bn=
an
4n

(Ⅰ)求证:数列{bn}是等差数列;
(Ⅱ)设Sn=
a1
4
+
a2
5
+
a3
6
+…+
an
n+3
,求满足不等式
1
257
Sn
S2n
1
5
的所有正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax2-3x,a∈R.
(1)若f(x)在区间[1,+∞)上是增函数,求a的取值范围;
(2)若f (x)在区间 (-1,2)内存在两个极值点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+alnx.
(1)当a=-2e时,求函数f(x)的单调区间;
(2)若函数g(x)=f(x)-2x在[1,4]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知焦点在x轴上椭圆长轴是短轴的2倍,椭圆上任意一点与两焦点组成的三角形面积的最大值为
3
,P是圆x2+y2=16上任意一点,过P点作椭圆的切线PA,PB,切点分别为A,B.
(1)求椭圆的轨迹方程;
(2)求
PA
PB
的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是数列{an}的前n项和,an>0,且Sn=
an2+an
2
(n∈N*
(Ⅰ)求证数列{an}是等差数列;
(Ⅱ)设数列{bn}满足bn=
1
Sn
,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

长方体ABCD-A1B1C1D1中,AB=AD=1,BB1=2,E为BB1的中点.(1)求证:AE⊥平面A1D1E;
(2)求二面角E-AD1-A1的正切值;
(3)求三棱锥A-C1D1E的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
(Ⅰ)求证:平面ABC1⊥平面A1C1CA;
(Ⅱ)设D是A1C1的中点,判断并证明在线段BB1上是否存在点E,使DE∥平面ABC1;若存在,求三棱锥E-ABC1的体积.

查看答案和解析>>

同步练习册答案