精英家教网 > 高中数学 > 题目详情
已知焦点在x轴上椭圆长轴是短轴的2倍,椭圆上任意一点与两焦点组成的三角形面积的最大值为
3
,P是圆x2+y2=16上任意一点,过P点作椭圆的切线PA,PB,切点分别为A,B.
(1)求椭圆的轨迹方程;
(2)求
PA
PB
的最大值和最小值.
考点:椭圆的简单性质
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)利用焦点在x轴上椭圆长轴是短轴的2倍,椭圆上任意一点与两焦点组成的三角形面积的最大值为
3
,求出a,b,c,即可求椭圆的轨迹方程;
(2)求出直线AB的方程为
mx
4
+ny=1.代入椭圆方程,利用数量积公式,结合P是圆x2+y2=16上任意一点,即可求
PA
PB
的最大值和最小值.
解答: 解:(1)∵焦点在x轴上椭圆长轴是短轴的2倍,椭圆上任意一点与两焦点组成的三角形面积的最大值为
3

∴a=2b,
1
2
•2c•b=
3

∴a=2,b=1,c=
3

∴椭圆的轨迹方程为
x2
4
+y2=1

(2)设P(m,n),A(x1,y1),B(x2,y2),则
PA:
x1x
4
+y1y=1,PB:
x2x
4
+y2y=1,
∵过P点作椭圆的切线PA,PB,
∴直线AB的方程为
mx
4
+ny=1.
代入椭圆方程可得(4n2+m2)x2-8mx+(16-16n2)=0,
∴x1+x2=
8m
4n2+m2
,x1x2=
16-16n2
4n2+m2

PA
PB
=
20-3m2
4n2+m2
+m2+n2-6,
∵m2+n2=16,
PA
PB
=
20-3m2
4n2+m2
+m2+n2-6
=11-
44
3n2+16

∵0≤n2≤16,
∴n=0,m=±4,即P(±4,0)时,
PA
PB
有最小值
33
4

∴m=0,n=±4,即P(0,±4)时,
PA
PB
有最大值
165
16
点评:本题综合考查椭圆的性质及其应用、直线与椭圆的位置关系及直线,解题时要认真审题,注意运用方程思想等数学思想,同时考查了学生的基本运算能力、运算技巧、逻辑推理能力,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

把一个周长为12的长方形卷成一个圆柱,当圆柱的体积最大时,该圆柱的底面周长与高的比为(  )
A、1:2B、1:π
C、2:1D、2:π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(1-x)+loga(x+3)(0<a<1).
(1)求函数f(x)的定义域;
(2)求函数f(x)的零点;
(3)若函数f(x)的最小值为-2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,已知每个元件正常工作的概率均为
2
3
,且各元件相互独立.
(1)求电流能在M与N之间通过的概率;
(2)记随机变量ξ表示T1,T2,T3,T4这四个元件中正常工作的元件个数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

斜率为3的直线经过抛物线x2=8y的焦点,且与抛物线相交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
x
lnx
,f(x)=g(x)-ax(a>0)

(Ⅰ)求函数g(x)的单调区间;
(Ⅱ)若函数f(x)(1,+∞)上是减函数,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,△PAB是等边三角形,D、E分别为AB、PC的中点.
(1)若点F在BC边上,BF=λBC,则实数λ为何值时,PB∥平面DEF;
(2)若∠PAC=∠PBC=90°,AB=2,AC=
5
,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和是Sn,且-1,Sn,an+1成等差数列(n∈N*),a1=1.
(1)求数列{an}的通项公式.
(2)若数列{bn}满足b1=a1,bn+1=bn+
1
3an
(n≥1)求数列{bn}的前n项和Tn
(3)函数f(x)=log3x,设数列{cn}满足cn=
1
(n+3)[f(an)+2]
求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn,且有Sn=2bn-1.
1)求{an}、{bn}的通项公式;
2)若cn=anbn,{cn}的前n项和为Tn,求Tn

查看答案和解析>>

同步练习册答案