16£®Ä³Ð£¾Ù°ì¡°Ð£Ô°ÎÄ»¯ÒÕÊõ½Ú¡±£¬ÆäÖÐÒ»Ïî²Â½±»î¶¯£¬²ÎÓëÕßÐèÏÈºó»Ø´ðÁ½µÀÑ¡ÔñÌ⣬ÎÊÌâAÓÐÈý¸öÑ¡ÏÎÊÌâBÓÐËĸöÑ¡Ïµ«¶¼Ö»ÓÐÒ»¸öÑ¡ÏîÊÇÕýÈ·µÄ£¬ÕýÈ·»Ø´ðÎÊÌâA¿É»ñ½±½ðaÔª£¬ÕýÈ·»Ø´ðÎÊÌâB¿É»ñ½±½ðbÔª£¬»î¶¯¹æ¶¨£º
¢Ù²ÎÓëÕß¿ÉÈÎÒâÑ¡Ôñ»Ø´ðÎÊÌâµÄ˳Ðò£»
¢ÚÈç¹ûµÚÒ»¸öÎÊÌâ»Ø´ð´íÎ󣬸òÎÓëÕ߲½±»î¶¯ÖÕÖ¹£¬²»»ñµÃÈκν±½ð£»
¢ÛÈç¹ûµÚÒ»¸öÎÊÌâ»Ø´ðÕýÈ·£¬¿ÉÒÔÑ¡Ôñ¼ÌÐø´ðÌ⣬ÈôµÚ¶þÌâÒ²´ð¶Ô£¬Ôò¸Ã²ÎÓëÕß»ñµÃÁ½µÀÌâµÄ½±½ð£¬ÈôµÚ¶þÌâ´ð´í£¬Ôò¸Ã²ÎÓëÕßÖ»Äܵõ½µÚÒ»¸öÎÊÌâ½±½ðµÄÒ»°ë£»Ò²¿ÉÒÔÑ¡Ôñ·ÅÆú´ðÌ⣬»ñµÃµÚÒ»ÌâµÄ½±½ð£¬²Â½±»î¶¯ÖÕÖ¹£®¼ÙÉèÒ»¸ö²ÎÓëÕßÔڻشðÎÊÌâǰ£¬¶ÔÕâÁ½¸öÎÊÌâ¶¼ºÜİÉú£¬ÇÒÔÚµÚÒ»¸öÎÊÌâ»Ø´ðÕýÈ·ºó£¬Ñ¡Ôñ¼ÌÐø´ðÌâºÍ·ÅÆú´ðÌâµÄ¿ÉÄÜÐÔÏàµÈ£®
£¨¢ñ£©Èç¹û¸Ã²ÎÓëÕßÏȻشðÎÊÌâA£¬ÇóÆäÇ¡ºÃ»ñµÃ½±½ða+bÔªµÄ¸ÅÂÊ£»
£¨¢ò£©ÊÔÈ·¶¨ÄÄÖֻشðÎÊÌâµÄ˳ÐòÄÜʹ¸Ã²ÎÓëÕß»ñ½±½ð¶îµÄÆÚÍûÖµ½Ï´ó£®

·ÖÎö £¨¢ñ£©»ñµÃa+bÔª½±½ðµÄÇé¿öÊÇÏÈ´ðA£¬»Ø´ðÕýÈ·£¬ÔÙÑ¡Ôñ´ðB£¬»ØÌõÒ²ÕýÈ·£¬ÓÉ´ËÄÜÇó³öÇ¡ºÃ»ñµÃ½±½ða+bÔªµÄ¸ÅÂÊ£®
£¨¢ò£©ÉèÏȻشðAʱ»ñµÃµÄ½±½ðÊýΪ¦ÎÔª£¬ÏȻشðBʱ»ñµÃµÄ½±½ðÊýΪ¦ÇÔª£¬·Ö±ðÇó³öÊýѧÆÚÍû£¬ÓÉ´ËÄÜÇó³ö½á¹û£®

½â´ð ½â£º£¨¢ñ£©»ñµÃa+bÔª½±½ðµÄÇé¿öÊÇ£º
ÏÈ´ðA£¬»Ø´ðÕýÈ·£¬ÔÙÑ¡Ôñ´ðB£¬»ØÌõÒ²ÕýÈ·£®
¡àÇ¡ºÃ»ñµÃ½±½ða+bÔªµÄ¸ÅÂÊP=$\frac{1}{3}¡Á\frac{1}{2}¡Á\frac{1}{4}$=$\frac{1}{24}$£®
£¨¢ò£©ÉèÏȻشðAʱ»ñµÃµÄ½±½ðÊýΪ¦ÎÔª£¬
¦ÎµÄ·Ö²¼ÁÐΪ£º

 ¦Î 0 $\frac{a}{2}$ a a+b
 P $\frac{2}{3}$ $\frac{1}{8}$ $\frac{1}{6}$ $\frac{1}{24}$
E¦Î=0¡Á$\frac{2}{3}+\frac{a}{2}¡Á\frac{1}{8}+a¡Á\frac{1}{6}+£¨a+b£©¡Á\frac{1}{24}=\frac{13}{48}a+\frac{b}{24}$£®
ÏȻشðBʱ»ñµÃµÄ½±½ðÊýΪ¦ÇÔª£¬
¦ÇµÄ·Ö²¼ÁÐΪ£º
 ¦Ç 0 $\frac{b}{2}$ b a+b
 P $\frac{3}{4}$ $\frac{1}{12}$ $\frac{1}{8}$ $\frac{1}{24}$
E¦Ç=$0¡Á\frac{3}{4}+\frac{b}{2}¡Á\frac{1}{12}+b¡Á\frac{1}{8}+£¨a+b£©¡Á\frac{1}{24}=\frac{a}{24}+\frac{5}{24}b$£¬
ÓÉE¦Î-E¦Ç=$\frac{11}{48}a-\frac{4}{24}b£¾0$£¬½âµÃa£¾$\frac{8}{11}b$£¬
¡àµ±a£¾$\frac{8}{11}b$ʱ£¬ÏÈÑ¡´ðAÌ⣬¿Éʹ»ñ½±½ð¶îµÄÆÚÍû½Ï´ó£»
µ±a£¼$\frac{8}{11}b$ʱ£¬ÏÈÑ¡´ðBÌ⣬¿Éʹ»ñ½±½ð¶îµÄÆÚÍû½Ï´ó£»
µ±a=$\frac{8}{11}b$ʱ£¬ÏÈÑ¡´ðAÌâÓëÏÈÑ¡´ðB£¬¿Éʹ»ñ½±½ð¶îµÄÆÚÍû½Ï´ó£®

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁС¢ÊýѧÆÚÍûµÄÇ󷨼°Ó¦Óã¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬ÔÚÀúÄê¸ß¿¼Öж¼ÊDZؿ¼ÌâÐÍÖ®Ò»£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÅ×ÎïÏßC£ºx2=4yµÄ½¹µãΪF£¬¹ýµãF×÷Ö±Ïßl½»Å×ÎïÏßCÓÚA¡¢BÁ½µã£»ÍÖÔ²EµÄÖÐÐÄÔÚÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬µãFÊÇËüµÄÒ»¸ö¶¥µã£¬ÇÒÆäÀëÐÄÂÊe=$\frac{{\sqrt{3}}}{2}$£®
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÉèÖ±ÏßlµÄбÂÊΪk£¬¾­¹ýA¡¢BÁ½µã·Ö±ð×÷Å×ÎïÏßCµÄÇÐÏßl1¡¢l2£¬ÈôÇÐÏßl1Óël2ÏཻÓÚµãM£®µ±k±ä»¯Ê±£¬µãMµÄ×Ý×ø±êÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³öÕâ¸ö¶¨Öµ£»·ñÔò£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÔÚµÈÑü¡÷ABCÖУ¬¡ÏBAC=90¡ã£¬AB=AC=2£¬$\overrightarrow{BC}=2\overrightarrow{BD}$£¬$\overrightarrow{AC}=3\overrightarrow{AE}$£¬Ôò$\overrightarrow{AD}•\overrightarrow{BE}$µÄֵΪ-$\frac{4}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£ºËÄÀâ×¶P-ABCDµÄµ×ÃæÊÇÆ½ÐÐËıßÐΣ¬¡ÏDAB=60¡ã£¬Æ½ÃæPAB¡ÍABD£¬
AP=2AD=4£¬PD=$2\sqrt{5}$£¬EΪADµÄÖе㣬FΪPBµÄÖе㣮
£¨¢ñ£© ÇóÖ¤£ºEF¡¬Æ½ÃæPCD£»
£¨¢ò£© µ±¶þÃæ½ÇA-PD-BµÄÓàÏÒֵΪ$\frac{1}{4}$ʱ£¬ÇóABµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÔÚ¡÷ABCÖУ¬¡ÏA=45¡ã£¬AB=3£¬AC=2$\sqrt{2}$£¬M¡¢N·Ö±ðΪAB¡¢BCµÄÖе㣬PΪACÉÏÈÎÒ»µã£¬Ôò$\overrightarrow{MP}•\overrightarrow{NP}$µÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{3}{8}$C£®$\frac{1}{2}$D£®$\frac{5}{8}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬Ä³¼òµ¥¼¸ºÎÌåµÄÒ»¸öÃæABCÄÚ½ÓÓÚÔ²M£¬ABÊÇÔ²MµÄÖ±¾¶£¬CF¡ÎBE£¬BE¡ÍÆ½ÃæABC£¬ÇÒAB=2£¬AC=1£¬BE+CF=7£®
£¨¢ñ£©ÇóÖ¤£ºAC¡ÍEF£º
£¨¢ò£©µ±CFΪºÎֵʱ£¬Æ½ÃæAEFÓëÆ½ÃæABCËù³ÉµÄÈñ½ÇÈ¡µÃ×îСֵ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1+lnx}{x}$
£¨1£©Èôº¯ÊýÔÚÇø¼ä£¨a£¬a+$\frac{1}{2}$£©£¨ÆäÖÐa£¾0£©ÉÏ´æÔÚ¼«Öµ£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©µ±x¡Ý1ʱ£¬ÇóÖ¤£º²»µÈʽf£¨x£©£¾$\frac{2cos2x}{x+1}$ºã³ÉÁ¢£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Å×ÎïÏßx=-$\frac{1}{4}$y2µÄ½¹µã×ø±êÊÇ£¨¡¡¡¡£©
A£®£¨-1£¬0£©B£®£¨0£¬-1£©C£®£¨-$\frac{1}{16}$£¬0£©D£®£¨0£¬-$\frac{1}{16}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®2016Äê1ÔÂ1ÈÕÆðÈ«¹úÍ³Ò»ÊµÊ©È«ÃæÁ½º¢Õþ²ß£®ÎªÁ˽âÊÊÁäÃñÖÚ¶Ô·Å¿ªÉúÓý¶þÌ¥Õþ²ßµÄ̬¶È£¬Ä³ÊÐѡȡ70ºó80ºó×÷Ϊµ÷²é¶ÔÏó£¬Ëæ»úµ÷²éÁË100룬µÃµ½Êý¾ÝÈç±í£º
Éú¶þÌ¥²»Éú¶þÌ¥ºÏ¼Æ
70ºó301545
80ºó451055
ºÏ¼Æ7525100
£¨1£©¸ù¾Ýµ÷²éÊý¾Ý£¬ÅжÏÊÇ·ñÓÐ90%ÒÔÉϰÑÎÕÈÏΪ¡°Éú¶þÌ¥ÓëÄêÁäÓйء±£¬²¢ËµÃ÷ÀíÓÉ£º
²Î¿¼Êý¾Ý£º
P£¨K2£¾k£©0.150.100.050.0250.0100.005
k2.7022.7063.8415.0246.6357.879
£¨²Î¿¼¹«Ê½£ºK2=$\frac{{n{{£¨{ac-bd}£©}^2}}}{{£¨{a+b}£©£¨{c+d}£©£¨{a+c}£©£¨{b+d}£©}}$£¬ÆäÖÐn=a+b+c+d£©
£¨2£©ÒÔÕâ100È˵ÄÑù±¾Êý¾Ý¹À¼Æ¸ÃÊеÄ×ÜÌåÊý¾Ý£¬ÇÒÒÔÆµÂʹÀ¼Æ¸ÅÂÊ£¬Èô´Ó¸ÃÊÐ70ºó¹«ÃñÖУ¨ÈËÊýºÜ¶à£©Ëæ»ú³éÈ¡3룬¼ÇÆäÖÐÉú¶þÌ¥µÄÈËÊýΪX£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸