精英家教网 > 高中数学 > 题目详情
10.已知抛物线C:x2=4y的焦点为F,过点F作直线l交抛物线C于A、B两点;椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且其离心率e=$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆E的方程;
(2)设直线l的斜率为k,经过A、B两点分别作抛物线C的切线l1、l2,若切线l1与l2相交于点M.当k变化时,点M的纵坐标是否为定值?若是,求出这个定值;否则,说明理由.

分析 (1)设椭圆E的方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0),半焦距为c.由已知条件,得F(0,1),$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,又b=1,a2=b2+c2,解出即可得出.
(2)假设点M的纵坐标为定值.直线l的斜率为k,且过F(0,1)故可设直线l的方程为y=kx+1,A(x1,y1),B(x2,y2).与抛物线方程联立可得x2-4kx-4=0,可得y1+y2=k(x1+x2)+2=4k2+2,${x}_{1}^{2}+{x}_{2}^{2}$=4(y1+y2)=16k2+8.另一方面,利用导数的几何意义可得:过抛物线C上A、B两点的切线方程分别是l1:$y=\frac{{x}_{1}}{2}$(x-x1)+y1,l2:y=$\frac{{x}_{2}}{2}$(x-x2)+y2,化简整理进而得出.

解答 解:(1)设椭圆E的方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0),半焦距为c.
由已知条件,得F(0,1),$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,又b=1,a2=b2+c2
解得a=2,b=1.
∴椭圆E的方程为:$\frac{{x}^{2}}{4}$+y2=1.)
(2)假设点M的纵坐标为定值.
∵直线l的斜率为k,且过F(0,1)故可设直线l的方程为y=kx+1,A(x1,y1),B(x2,y2).
由$\left\{\begin{array}{l}{{x}^{2}=4y}\\{y=kx+1}\end{array}\right.$,消去y并整理得x2-4kx-4=0,
∴x1+x2=4k,x1•x2=-4.且x1≠x2
∴y1+y2=k(x1+x2)+2=4k2+2.
${x}_{1}^{2}+{x}_{2}^{2}$=4(y1+y2)=16k2+8.
∵抛物线C的方程为y=$\frac{{x}^{2}}{4}$,求导得y′=$\frac{1}{2}x$,
∴过抛物线C上A、B两点的切线方程分别是
l1:$y=\frac{{x}_{1}}{2}$(x-x1)+y1,l2:y=$\frac{{x}_{2}}{2}$(x-x2)+y2
依题意,相减可得:$\frac{{x}_{1}-{x}_{2}}{2}$[x-(x1+x2)]+y1-y2=0,
∵x1+x2=4k,且x1≠x2,y1-y2=k(x1-x2),代入可得x=2k,)
∴2y=$\frac{{x}_{1}+{x}_{2}}{2}$x-$\frac{{x}_{1}^{2}+{x}_{2}^{2}}{2}$+y1+y2=$\frac{4k}{2}×2k$-$\frac{16{k}^{2}+8}{2}$+4k2+2=-2,
∴y=-1.
即点M的纵坐标为定值-1.

点评 本题考查了椭圆的标准方程及其性质、抛物线的切线、导数的应用、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知椭圆E的中心在原点,焦点在坐标轴上,且经过($\sqrt{2},-\frac{\sqrt{2}}{2}$)与(1,$\frac{\sqrt{3}}{2}$)两点.
(Ⅰ)求E的方程;
(Ⅱ)设直线l:y=kx+m(k≠0,m>0)与E交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求△OPQ面积的最大值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.向圆(x-1)2+(y+3)2=36内随机投掷一点,则该点落在直线3x-4y=0的左上方的概率为$\frac{1}{3}$-$\frac{\sqrt{3}}{4π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.
(1)求证:AE⊥BE;
(2)求三棱锥D-AEC的体积;
(3)设点M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系中,以O为极点,x轴的正半轴为极轴,且两坐标系取相同的长度单位.已知圆C的极坐标方程是ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$),且直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=-1+2\sqrt{2t}}\end{array}\right.$(t为参数),直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点,
(1)求圆C的圆心的极坐标;
(2)求三角形PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,点P是椭圆上任意一点,F1、F2分别是椭圆的左右焦点,△PF1F2的面积最大值为$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)从圆x2+y2=16上一点P向椭圆C引两条切线,切点分别为A,B,当直线AB分别与x轴、y轴交于M、N两点时,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,左、右焦点分别是F1、F2,以原点O为圆心,椭圆C的短半轴为半径的圆与直线l:x-y+2=0相切.
(1)求椭圆C的标准方程;
(2)设P为椭圆C上不在x轴上的一个动点,过点F2作OP的平行线交椭圆与M、N两个不同的点,记S1=S${\;}_{△P{F}_{2}M}$,S2=S${\;}_{△O{F}_{2}N}$,令S=S1+S2,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:
x681012
y2356
(1)请在图中画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(3)试根据(2)求出的线性回归方程,预测记忆力为9的同学的判断力.
相关公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{1}}^{2}-n\overline{{x}^{2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某校举办“校园文化艺术节”,其中一项猜奖活动,参与者需先后回答两道选择题,问题A有三个选项,问题B有四个选项,但都只有一个选项是正确的,正确回答问题A可获奖金a元,正确回答问题B可获奖金b元,活动规定:
①参与者可任意选择回答问题的顺序;
②如果第一个问题回答错误,该参与者猜奖活动终止,不获得任何奖金;
③如果第一个问题回答正确,可以选择继续答题,若第二题也答对,则该参与者获得两道题的奖金,若第二题答错,则该参与者只能得到第一个问题奖金的一半;也可以选择放弃答题,获得第一题的奖金,猜奖活动终止.假设一个参与者在回答问题前,对这两个问题都很陌生,且在第一个问题回答正确后,选择继续答题和放弃答题的可能性相等.
(Ⅰ)如果该参与者先回答问题A,求其恰好获得奖金a+b元的概率;
(Ⅱ)试确定哪种回答问题的顺序能使该参与者获奖金额的期望值较大.

查看答案和解析>>

同步练习册答案