精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\frac{1+lnx}{x}$
(1)若函数在区间(a,a+$\frac{1}{2}$)(其中a>0)上存在极值,求实数a的取值范围;
(2)当x≥1时,求证:不等式f(x)>$\frac{2cos2x}{x+1}$恒成立.

分析 (1)f(x)=$\frac{1+lnx}{x}$,则f′(x)=$\frac{-lnx}{{x}^{2}}$(x>0),利用导数研究函数的极值,进而的a的取值范围.
(2)当x≥1时,不等式f(x)>$\frac{2cos2x}{x+1}$恒成立.等价于:2cos2x<$\frac{(x+1)(1+lnx)}{x}$=1+$\frac{1}{x}$+lnx+$\frac{lnx}{x}$=g(x),利用导数研究函数g(x)的单调性可得其最小值,再利用三角函数的单调性与值域即可得出.

解答 (1)解:f(x)=$\frac{1+lnx}{x}$,则f′(x)=$\frac{-lnx}{{x}^{2}}$(x>0),
当0<x<1时,f'(x)>0;当x>1时,f'(x)<0.
∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
∴f(x)在x=1处取得极大值.
∵函数在区间(a,a+$\frac{1}{2}$)(其中a>0)上存在极值,
∴$0<a<1<a+\frac{1}{2}$,
解得$\frac{1}{2}<a<1$.
(2)证明:当x≥1时,不等式f(x)>$\frac{2cos2x}{x+1}$恒成立.
等价于:2cos2x<$\frac{(x+1)(1+lnx)}{x}$=1+$\frac{1}{x}$+lnx+$\frac{lnx}{x}$=g(x),
x≥1时,x>lnx.
g′(x)=-$\frac{1}{{x}^{2}}$+$\frac{1}{x}$+$\frac{1-lnx}{{x}^{2}}$=$\frac{x-lnx}{{x}^{2}}$>0,
因此函数g(x)在x≥1时单调递增,
∴g(x)≥g(1)=2.当且仅当x=1时取等号.
而x=1时,2cos2x<2.x>1时,2cos2x≤2.
∴2cos2x<$\frac{(x+1)(1+lnx)}{x}$恒成立.
则原不等式成立.

点评 本题考查了利用导数研究函数的单调性极值与最值、三角函数的单调性与值域,考查了等价转化方法、推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,左、右焦点分别是F1、F2,以原点O为圆心,椭圆C的短半轴为半径的圆与直线l:x-y+2=0相切.
(1)求椭圆C的标准方程;
(2)设P为椭圆C上不在x轴上的一个动点,过点F2作OP的平行线交椭圆与M、N两个不同的点,记S1=S${\;}_{△P{F}_{2}M}$,S2=S${\;}_{△O{F}_{2}N}$,令S=S1+S2,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某空间几何体ABCDEF的三视图及直观图如图所示

(1)求异面直线BD与EF所成角的大小
(2)求二面角D-BF-E的大小
(3)求该几何体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某校举办“校园文化艺术节”,其中一项猜奖活动,参与者需先后回答两道选择题,问题A有三个选项,问题B有四个选项,但都只有一个选项是正确的,正确回答问题A可获奖金a元,正确回答问题B可获奖金b元,活动规定:
①参与者可任意选择回答问题的顺序;
②如果第一个问题回答错误,该参与者猜奖活动终止,不获得任何奖金;
③如果第一个问题回答正确,可以选择继续答题,若第二题也答对,则该参与者获得两道题的奖金,若第二题答错,则该参与者只能得到第一个问题奖金的一半;也可以选择放弃答题,获得第一题的奖金,猜奖活动终止.假设一个参与者在回答问题前,对这两个问题都很陌生,且在第一个问题回答正确后,选择继续答题和放弃答题的可能性相等.
(Ⅰ)如果该参与者先回答问题A,求其恰好获得奖金a+b元的概率;
(Ⅱ)试确定哪种回答问题的顺序能使该参与者获奖金额的期望值较大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,矩形CDEF所在的平面与矩形ABCD所在的平面垂直,AD=$\sqrt{2}$,DE=$\sqrt{3}$,AB=4,EG=$\frac{1}{4}$EF,点M在线段GF上(包括两端点),点
N在线段AB上,且$\overrightarrow{GM}$=$\overrightarrow{AN}$,则二面角M-DN-C的平面角的取值范围为(  )
A.[30°,45°]B.[45°,60°]C.[30°,90°)D.[60°,90°)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{a}{x}$+lnx-1,a∈R.
(1)若曲线y=f(x)在点P(1,y0)处的切线平行于直线y=-x+1,求函数y=f(x)的单调区间;
(2)是否存在实数a,使函数y=f(x)在x∈(0,e]上有最小值1?若存在,求出a的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=3,E为B1C1的中点,F在CC1上,且C1F=1,G在AA1上,且AG=2.
(1)证明:DG∥平面A1EF;
(2)设平面A1EF与DD1交于点H,求线段DH的长,并求出直线BH与截面A1EFH所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,直线l:$\left\{{\begin{array}{l}{x=m+t}\\{y=2+\sqrt{3}t}\end{array}(t为参数)}\right.$,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的方程是$ρ=\frac{8cosθ}{1-cos2θ}$;
(Ⅰ)若m=0,在曲线C上确定一点M,使得它到直线l的距离最小,并求出最小值;
(Ⅱ)设P(m,2)且m>1,直线l与曲线C相交于A,B两点,$\frac{{|{|{PA}|-|{PB}|}|}}{{|{PA}|•|{PB}|}}$=$\frac{{\sqrt{3}-1}}{2}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=|x-1|+|2x-1|.
(Ⅰ)求不等式f(x)≥2的解集;
(Ⅱ)若?x∈R,不等式f(x)≥a|x|恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案