精英家教网 > 高中数学 > 题目详情
3.如图,矩形CDEF所在的平面与矩形ABCD所在的平面垂直,AD=$\sqrt{2}$,DE=$\sqrt{3}$,AB=4,EG=$\frac{1}{4}$EF,点M在线段GF上(包括两端点),点
N在线段AB上,且$\overrightarrow{GM}$=$\overrightarrow{AN}$,则二面角M-DN-C的平面角的取值范围为(  )
A.[30°,45°]B.[45°,60°]C.[30°,90°)D.[60°,90°)

分析 以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,利用向量法能求出二面角M-DN-C的平面角的取值范围.

解答 解:以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,
∵AD=$\sqrt{2}$,DE=$\sqrt{3}$,AB=4,
EG=$\frac{1}{4}$EF=1,
点M在线段GF上(包括两端点),
点N在线段AB上,且$\overrightarrow{GM}$=$\overrightarrow{AN}$,
∴0≤AN=EM≤3,
D(0,0,0),设N($\sqrt{2}$,a-1,0),a∈[1,4],则M(0,a,$\sqrt{3}$),
$\overrightarrow{DN}$=($\sqrt{2},a-1,0$),
$\overrightarrow{DM}$=(0,a,$\sqrt{3}$),
设平面DMN的法向量
$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DN}=\sqrt{2}x+(a-1)y=0}\\{\overrightarrow{n}•\overrightarrow{DM}=ay+\sqrt{3}z=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=($\frac{a-1}{\sqrt{2}}$,1,-$\frac{a}{\sqrt{3}}$)
平面DNC的法向量$\overrightarrow{m}$=(0,0,1),
设二面角M-DN-C的平面角为θ,
则cosθ=$\frac{|\overrightarrow{n}•\overrightarrow{m}|}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{2{a}^{2}}{5{a}^{2}-6a+9}$=$\frac{2}{9(\frac{1}{a}-\frac{1}{3})^{2}+4}$∈[$\frac{1}{2}$,$\frac{\sqrt{2}}{2}$],
∴45°≤θ≤60°.
∴二面角M-DN-C的平面角的取值范围为[45°,60°].
故选:B.

点评 本题考查二面角的平面角的取值范围的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,$\overrightarrow{a}$=($\sqrt{2}$,$\sqrt{2}$),|$\overrightarrow{a}$+2$\overrightarrow{b}$|=2$\sqrt{3}$,则|$\overrightarrow{b}$|=(  )
A.$\sqrt{3}$B.1C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某三棱锥的三视图如图所示,已知该三视图中正视图和俯视图均为边长为2的正三角形,侧视图为直角三角形,则该三棱锥的体积等于(  )
A.1B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,∠A=45°,AB=3,AC=2$\sqrt{2}$,M、N分别为AB、BC的中点,P为AC上任一点,则$\overrightarrow{MP}•\overrightarrow{NP}$的最小值是(  )
A.$\frac{1}{4}$B.$\frac{3}{8}$C.$\frac{1}{2}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在五棱锥S-ABCDE中,SA⊥底面ABCDE,SA=AB=AE=2,BC=DE=$\sqrt{3}$,∠BAE=∠BCD=∠CDE=120°
(Ⅰ)求异面直线CD与SB所成的角(用反三角函数值表示);
(Ⅱ)求证BC⊥平面SAB;
(Ⅲ)用反三角函数值表示二面角B-SC-D的大小(本小问不必写出解答过程).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1+lnx}{x}$
(1)若函数在区间(a,a+$\frac{1}{2}$)(其中a>0)上存在极值,求实数a的取值范围;
(2)当x≥1时,求证:不等式f(x)>$\frac{2cos2x}{x+1}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)设函数f(x)=$\sqrt{|{x+1}|+|{x-2}|-a}$的定义域为R,试求a的取值范围;
(2)已知实数x,y,z满足x+2y+3z=1,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=x2+ax-lnx,其中实数a为常数.
(1)若a=2,求曲线y=f(x)在点P(1,f(1))处的切线方程;
(2)若函数g(x)=$\frac{f(x)}{{e}^{x}}$在区间(0,1]上是减函数,其中e为自然对数的底数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如表所示:
 序号 1 2 3 4 5 6 7 8 9 10 1112 13  14 1516  17 1819 20 
 数学成绩 9575  80 94 92 65 67 84 98 7167 93  64 78 77 90 57 83 7283 
 物理成绩 90 63 7287  91 71 58 82 93 81 77 82 48 85 69 91 6184  7886 
若数学成绩90分(含90分)以上为优秀,物理成绩85(含85分)以上为优秀.有多少把握认为学生的学生成绩与物理成绩有关系(  )
参考数据公式:①独立性检验临界值表
 P(K2≥k0 0.50 0.40 0.25 015. 0.10 0.05 0.0250.010 0.005  0001
 k0 0.4550.708  1.323 2.072 2.706 3.841 5.024 6356. 7.879 10.828
②独立性检验随机变量K2的值的计算公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.
A.99.9%B.99.5%C.97.5%D.95%

查看答案和解析>>

同步练习册答案