精英家教网 > 高中数学 > 题目详情
17.在平面直角坐标系xOy中,直线l:$\left\{{\begin{array}{l}{x=m+t}\\{y=2+\sqrt{3}t}\end{array}(t为参数)}\right.$,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的方程是$ρ=\frac{8cosθ}{1-cos2θ}$;
(Ⅰ)若m=0,在曲线C上确定一点M,使得它到直线l的距离最小,并求出最小值;
(Ⅱ)设P(m,2)且m>1,直线l与曲线C相交于A,B两点,$\frac{{|{|{PA}|-|{PB}|}|}}{{|{PA}|•|{PB}|}}$=$\frac{{\sqrt{3}-1}}{2}$,求m的值.

分析 (Ⅰ)求出曲线C的普通方程,设直线方程为y=$\sqrt{3}x$+b,代入抛物线方程,可得3x2+(2$\sqrt{3}$b-4)x+b2=0,利用△=0,可得M的坐标,即可得出结论;
(Ⅱ)利用参数的几何意义,结合条件,即可求m的值.

解答 解:(Ⅰ)由曲线C的极坐标方程为$ρ=\frac{8cosθ}{1-cos2θ}$,即ρ(1-cos2θ)=8cosθ,化为ρ2•2sin2θ=8ρcosθ,∴y2=4x.
m=0,直线方程为y=$\sqrt{3}x$+2
设直线方程为y=$\sqrt{3}x$+b,代入抛物线方程,可得3x2+(2$\sqrt{3}$b-4)x+b2=0,
△=(2$\sqrt{3}$b-4)2-12b2=0,∴b=$\frac{\sqrt{3}}{3}$,x=$\frac{1}{3}$,y=$\frac{2\sqrt{3}}{3}$,
∴M($\frac{1}{3}$,$\frac{2\sqrt{3}}{3}$),到直线l的距离最小,最小值为$\frac{|2-\frac{\sqrt{3}}{3}|}{\sqrt{3+1}}$=1-$\frac{\sqrt{3}}{6}$;
(Ⅱ)直线l:$\left\{{\begin{array}{l}{x=m+t}\\{y=2+\sqrt{3}t}\end{array}(t为参数)}\right.$,代入y2=4x.可得3t2+(4$\sqrt{3}$-4)t+4-4m=0
设A,B对应的参数分别为t1,t2
则t1+t2=$\frac{4-4\sqrt{3}}{3}$,①t1t2=$\frac{4-4m}{3}$②,
∵$\frac{{|{|{PA}|-|{PB}|}|}}{{|{PA}|•|{PB}|}}$=$\frac{{\sqrt{3}-1}}{2}$,P(m,2)且m>1,
∴$\frac{\sqrt{(\frac{4-4\sqrt{3}}{3})^{2}-4•\frac{4-4m}{3}}}{|\frac{4-4m}{3}|}$=$\frac{{\sqrt{3}-1}}{2}$,
∴m=-5-3$\sqrt{3}$+$\sqrt{59+36\sqrt{3}}$.

点评 本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与抛物线相切问题转化为一元二次的判别式满足的条件,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在等腰△ABC中,∠BAC=90°,AB=AC=2,$\overrightarrow{BC}=2\overrightarrow{BD}$,$\overrightarrow{AC}=3\overrightarrow{AE}$,则$\overrightarrow{AD}•\overrightarrow{BE}$的值为-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1+lnx}{x}$
(1)若函数在区间(a,a+$\frac{1}{2}$)(其中a>0)上存在极值,求实数a的取值范围;
(2)当x≥1时,求证:不等式f(x)>$\frac{2cos2x}{x+1}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.抛物线x=-$\frac{1}{4}$y2的焦点坐标是(  )
A.(-1,0)B.(0,-1)C.(-$\frac{1}{16}$,0)D.(0,-$\frac{1}{16}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=x2+ax-lnx,其中实数a为常数.
(1)若a=2,求曲线y=f(x)在点P(1,f(1))处的切线方程;
(2)若函数g(x)=$\frac{f(x)}{{e}^{x}}$在区间(0,1]上是减函数,其中e为自然对数的底数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.哈三中某兴趣小组为了调查高中生的数学成绩是否与物理成绩有关系,在高二年级随机调查了50名学生,调查结果表明:在数学成绩较好的25人中有18人物理成绩好,另外7人物理成绩一般;在数学成绩一般的25人中有6人物理成绩好,另外19人物理成绩一般.
(Ⅰ) 试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出是否有99.9%把握认为高中生的数学成绩与物理成绩有关系.
数学成绩好数学成绩一般总计
物理成绩好
物理成绩一般
总计
(Ⅱ)  现将4名数学成绩好且物理成绩也好的学生分别编号为1,2,3,4,将4名数学成绩好但物理成绩一般的学生也分别编号1,2,3,4,从这两组学生中各任选1人进行学习交流,求被选取的2名学生编号之和不大于5的概率.
附:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,则该几何体的表面积与体积比为(  )
A.$3\sqrt{2}$B.$2\sqrt{2}$C.2$\sqrt{2}$+1D.$\frac{{3\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.2016年1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取70后80后作为调查对象,随机调查了100位,得到数据如表:
生二胎不生二胎合计
70后301545
80后451055
合计7525100
(1)根据调查数据,判断是否有90%以上把握认为“生二胎与年龄有关”,并说明理由:
参考数据:
P(K2>k)0.150.100.050.0250.0100.005
k2.7022.7063.8415.0246.6357.879
(参考公式:K2=$\frac{{n{{({ac-bd})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)
(2)以这100人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中(人数很多)随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知A,B是圆O:x2+y2=4上的两个动点,P是线段A,B上的动点,当△AOB的面积最大时,$\overrightarrow{AO}•\overrightarrow{AP}-{\overrightarrow{AP}^2}$的最大值为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案