精英家教网 > 高中数学 > 题目详情
4.已知A,B是圆O:x2+y2=4上的两个动点,P是线段A,B上的动点,当△AOB的面积最大时,$\overrightarrow{AO}•\overrightarrow{AP}-{\overrightarrow{AP}^2}$的最大值为$\frac{1}{2}$.

分析 由题意知当∠AOB=$\frac{π}{2}$时,S取最大值2,此时OA⊥OB建立坐标系可得A、B、P的坐标,可得$\overrightarrow{AO}•\overrightarrow{AP}-{\overrightarrow{AP}^2}$为关于x的二次函数,由二次函数的最值可得.

解答 解:由题意知:△AOB的面积S=$\frac{1}{2}|OA||OB|$sin∠AOB
=$\frac{1}{2}$×2×2×sin∠AOB=2sin∠AOB,
当∠AOB=$\frac{π}{2}$时,S取最大值2,此时OA⊥OB,
如图所示,不妨取A(2,0),B(0,2),设P(x,2-x)
∴$\overrightarrow{AO}•\overrightarrow{AP}-{\overrightarrow{AP}^2}$=$\overrightarrow{AP}•\overrightarrow{PO}$
=(x-2,2-x)•(-x,x-2)
=-x(x-2)+(2-x)(x-2)
=(x-2)(2-2x)=-2x2+6x-1,x∈[0,2]
当x=$\frac{3}{2}$时,上式取最大值$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查平面向量的数量积的运算,涉及三角形的面积公式和二次函数的最值,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,直线l:$\left\{{\begin{array}{l}{x=m+t}\\{y=2+\sqrt{3}t}\end{array}(t为参数)}\right.$,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的方程是$ρ=\frac{8cosθ}{1-cos2θ}$;
(Ⅰ)若m=0,在曲线C上确定一点M,使得它到直线l的距离最小,并求出最小值;
(Ⅱ)设P(m,2)且m>1,直线l与曲线C相交于A,B两点,$\frac{{|{|{PA}|-|{PB}|}|}}{{|{PA}|•|{PB}|}}$=$\frac{{\sqrt{3}-1}}{2}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=|x-1|+|2x-1|.
(Ⅰ)求不等式f(x)≥2的解集;
(Ⅱ)若?x∈R,不等式f(x)≥a|x|恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.四棱锥P-ABCD的底面是边长为2$\sqrt{2}$的正方形,高为1.其外接球半径为2$\sqrt{2}$,则正方形ABCD的中心与点P之间的距离为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.$\sqrt{2}$或1D.2$\sqrt{2}$或$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在平面直角坐标系xOy中,已知点A(2,0),直线l:x+y-5=0,点B(x,y)是圆C:x2+2x+y2-1=0上的动点,AD⊥l,BE⊥l,垂足分别为D,E,则线段DE的最大值是(  )
A.$\sqrt{2}$B.$\frac{{3\sqrt{2}}}{2}$C.$2\sqrt{2}$D.$\frac{{5\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在直三棱柱ADF-BCE中,AB=BC=BE=2,CE=$2\sqrt{2}$.
(1)求证:AC⊥平面BDE;
(2)若EB=4EK,求直线AK与平面BDF所成角φ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知直线2x+(y-3)m-4=0(m∈R)恒过定点P,若点P平分圆x2+y2-2x-4y-4=0的弦MN,则弦MN所在的直线方程是x+y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点O是三角形ABC的边BC靠近B的一个三等分点,过点O的直线交直线AB、AC分别于M、N;$\overrightarrow{AM}=m\overrightarrow{AB}$,$\overrightarrow{AN}=n\overrightarrow{AC}$,则$\frac{2}{m}+\frac{1}{n}$=3.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:选择题

下列函数中,既是奇函数,又在上为增函数的是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案