精英家教网 > 高中数学 > 题目详情
9.如图,在直三棱柱ADF-BCE中,AB=BC=BE=2,CE=$2\sqrt{2}$.
(1)求证:AC⊥平面BDE;
(2)若EB=4EK,求直线AK与平面BDF所成角φ的正弦值.

分析 (1)证出AC⊥BD,BE⊥AC,即可证明AC⊥平面BDE;
(2)若EB=4EK,结论坐标系,利用向量方法求直线AK与平面BDF所成角φ的正弦值.

解答 (1)证明:由题意,AB⊥BE,AB⊥BC.
∵AB=BC=BE=2,CE=$2\sqrt{2}$,
∴BC2+BE2=CE2,AC⊥BD,
∴BE⊥BC.
∵AB∩BC=B,
∴BE⊥平面ABCD,
∴BE⊥AC,
∵BD∩BE=B,
∴AC⊥平面BDE;
(2)解:建立如图所示的坐标系,
则B(0,0,0),F(0,2,2),A(0,2,0),D(2,2,0),
$\overrightarrow{BD}$=(2,2,0),$\overrightarrow{BF}$=(0,2,2),
∵EB=4EK,
∴K(0,0,$\frac{3}{2}$).
设平面BDF的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{2x+2y=0}\\{2y+2z=0}\end{array}\right.$,
取$\overrightarrow{n}$=(1,-1,1),
∵$\overrightarrow{AK}$=(0,-2,$\frac{3}{2}$).
∴直线AK与平面BDF所成角φ的正弦值=$\frac{|2+\frac{3}{2}|}{\sqrt{3}×\sqrt{4+\frac{9}{4}}}$=$\frac{7\sqrt{3}}{15}$.

点评 本题考查线面垂直的判定与性质,考查线面角,考查向量方法的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.哈三中某兴趣小组为了调查高中生的数学成绩是否与物理成绩有关系,在高二年级随机调查了50名学生,调查结果表明:在数学成绩较好的25人中有18人物理成绩好,另外7人物理成绩一般;在数学成绩一般的25人中有6人物理成绩好,另外19人物理成绩一般.
(Ⅰ) 试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出是否有99.9%把握认为高中生的数学成绩与物理成绩有关系.
数学成绩好数学成绩一般总计
物理成绩好
物理成绩一般
总计
(Ⅱ)  现将4名数学成绩好且物理成绩也好的学生分别编号为1,2,3,4,将4名数学成绩好但物理成绩一般的学生也分别编号1,2,3,4,从这两组学生中各任选1人进行学习交流,求被选取的2名学生编号之和不大于5的概率.
附:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线C:x2=2py(p>0),过其焦点作斜率为1的直线l交抛物线C于M、N两点,且|MN|=16.
(Ⅰ)求抛物线C的方程;
(Ⅱ)已知动圆P的圆心在抛物线C上,且过定点D(0,4),若动圆P与x轴交于A、B两点,求$\frac{|DA|}{|DB|}$+$\frac{|DB|}{|DA|}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,∠ABC=∠BAD=90°,且PA=AB=BC=$\frac{1}{2}$AD=1,PA⊥平面ABCD.
(1)求PB与平面PCD所成角的正弦值;
(2)棱PD上是否存在一点E满足∠AEC=90°?若存在,求AE的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知A,B是圆O:x2+y2=4上的两个动点,P是线段A,B上的动点,当△AOB的面积最大时,$\overrightarrow{AO}•\overrightarrow{AP}-{\overrightarrow{AP}^2}$的最大值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{{\begin{array}{l}{{2^x}-\frac{a}{3},x≤0}\\{lnx-2x+a,x>0}\end{array}}$有三个不同的零点,则实数a的取值范围是(  )
A.(1+ln2,3]B.(ln2,3]C.(0,1+ln2)D.(0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线:y2=2px(p>0)的焦点F在双曲线:$\frac{x^2}{3}$-$\frac{y^2}{6}$=1的右准线上,抛物线与直线l:y=k(x-2)(k>0)交于A,B两点,AF,BF的延长线与抛物线交于C,D两点.
(1)求抛物线的方程;
(2)若△AFB的面积等于3,求k的值;
(3)记直线CD的斜率为kCD,证明:$\frac{{{k_{CD}}}}{k}$为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.对于平面向量$\overrightarrow a$=(x,y),我们定义它的一种“新模长”为|x+y|+|x-y|,仍记作$|{\overrightarrow a}$|,即|${\overrightarrow a}$|=|x+y|+|x-y|.在这种“新模长”的定义下,给出下列命题:
①对平面内的任意两个向量$\overrightarrow a,\overrightarrow b$,总有$|{\overrightarrow a-\overrightarrow b}|≤|{\overrightarrow a}|+|{\overrightarrow b}$|;
②设O为坐标原点,点P在直线y=x-1上运动,则$|{\overrightarrow{OP}}$|的最小值=1;
③设O为坐标原点,点P在圆O:x2+y2=1上运动,则$|{\overrightarrow{OP}}$|的最大值=2;
④设O为坐标原点,点P在椭圆$\frac{x^2}{4}+\frac{y^2}{1}$=1上运动,则$|{\overrightarrow{OP}}$|的最小值=2;
写出所有正确命题的序号①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}的通项是关于x的不等式x2-x<nx(n∈N)的解集中的整数的个数,且已知f(n)=$\frac{1}{{a}_{n}+1}$+$\frac{1}{{a}_{n}+2}$+…+$\frac{1}{{a}_{n}+n}$.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{{a}_{n}}{{2}^{n}}$,求{bn}的前n项和Sn
(3)求证:对n≥2且n∈N,恒有$\frac{7}{12}$≤f(n)<1.

查看答案和解析>>

同步练习册答案