分析 (Ⅰ)由$\left\{\begin{array}{l}y=x+\frac{p}{2}\\{x^2}=2py\end{array}\right.$,得x2-2px-p2=0,利用韦达定理,结合|MN|=16,求抛物线C的方程;
(Ⅱ)求出$\frac{|DA|}{|DB|}$的范围,再借助于导数,即可求$\frac{|DA|}{|DB|}$+$\frac{|DB|}{|DA|}$的最大值.
解答 解:(Ⅰ)设抛物线的焦点为$F(0,\frac{p}{2})$,则直线$l:y=x+\frac{p}{2}$,
由$\left\{\begin{array}{l}y=x+\frac{p}{2}\\{x^2}=2py\end{array}\right.$,得x2-2px-p2=0-------------(2分)
∴x1+x2=2p,∴y1+y2=3p,∴|MN|=y1+y2+p=4p=16,
∴p=4,∴抛物线C的方程为x2=8y------------(4分)
(Ⅱ)设动圆圆心P(x0,y0),A(x1,0),B(x2,0),则$x_0^2=8{y_0}$,
且圆$P:{(x-{x_0})^2}+{(y-{y_0})^2}=x_0^2+{({y_0}-4)^2}$,
令y=0,整理得:${x^2}-2{x_0}x+x_0^2-16=0$,
解得:x1=x0-4,x2=x0+4,-------------(4分)
设$t=\frac{|DA|}{|DB|}=\sqrt{\frac{{{{({x_0}-4)}^2}+16}}{{{{({x_0}+4)}^2}+16}}}=\sqrt{\frac{{x_0^2-8{x_0}+32}}{{x_0^2+8{x_0}+32}}}=\sqrt{1-\frac{{16{x_0}}}{{x_0^2+8{x_0}+32}}}$,
当x0=0时,t=1,?
当x0≠0时,$t=\sqrt{1-\frac{16}{{{x_0}+8+\frac{32}{x_0}}}}$,
∵x0>0,∴${x_0}+\frac{32}{x_0}≥8\sqrt{2}$,∴$t≥\sqrt{1-\frac{16}{{8+8\sqrt{2}}}}=\sqrt{3-2\sqrt{2}}=\sqrt{2}-1$,且t<1,?
综上??知$\sqrt{2}-1≤t≤1$,-------------(8分)
∵$f(t)=t+\frac{1}{t}$在$[\sqrt{2}-1,1]$单调递减,
∴$\frac{|DA|}{|DB|}+\frac{|DB|}{|DA|}=t+\frac{1}{t}≤\sqrt{2}-1+\frac{1}{{\sqrt{2}-1}}=2\sqrt{2}$,
当且仅当$t=\sqrt{2}-1$,即${x_0}=4\sqrt{2}$时等号成立.
所以$\frac{|DA|}{|DB|}+\frac{|DB|}{|DA|}$的最大值为$2\sqrt{2}$.-------------(12分)
点评 本题考查了抛物线与圆的标准性质及其性质、导数知识的运用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | $\sqrt{2}$或1 | D. | 2$\sqrt{2}$或$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com