精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\frac{a}{x}$+lnx-1,a∈R.
(1)若曲线y=f(x)在点P(1,y0)处的切线平行于直线y=-x+1,求函数y=f(x)的单调区间;
(2)是否存在实数a,使函数y=f(x)在x∈(0,e]上有最小值1?若存在,求出a的值,若不存在,说明理由.

分析 (1)根据曲线y=f(x)在P(1,y0)处的切线平行于直线y=-x+1,则f′(1)=-1,求出a,对函数求导,l利用导函数,在定义域中求出函数的单调区间.
(2)f′(x)=$\frac{-a}{{x}^{2}}+\frac{1}{x}=\frac{x-a}{{x}^{2}}$,分a≤0,a≥e,0<e<e讨论函数的最小值,建立有关a的方程,求出a即可.

解答 解:(1)函数f(x)的定义域为(0,+∞),
∵y=f(x)在点P(1,y0)处的切线平行于直线y=-x+1,
∴f′(1)=-1,f′(x)=$\frac{-a}{{x}^{2}}+\frac{1}{x}=\frac{x-a}{{x}^{2}}$,则f′(1)=1-a=-1,解得a=2,
此时f′(x)=$\frac{x-2}{{x}^{2}}$,
由f′(x)>0,解得x>2,此时函数单调递增,增区间为(2,+∞),
由f′(x)<0,解得0<x<2,此时函数单调递增,减区间为(0,2).
(2)f′(x)=$\frac{-a}{{x}^{2}}+\frac{1}{x}=\frac{x-a}{{x}^{2}}$,
1)当a≤0时,f′(x)≥0在(0,e]上恒成立,f(x)在(0,e]上递增,故不存在最小值.
2)当a≥e时,f′(x)≤0在(0,e]上恒成立,f(x)在(0,e]上递减,故存在最小值为f(e)=$\frac{a}{e}=1$,⇒a=e符合题意.
3)0<a<e时,f′(x)≥0在(a,e]上恒成立,f(x)在(a,e]上递增,f′(x)≤0在(0,a]上恒成立,f(x)在(0,a]上递减,
故存在最小值为f(a)=lna=1⇒a=e不符合题意.
综上,存在实数a=e,使函数y=f(x)在x∈(0,e]上有最小值1.

点评 本题考查函数的导数综合应用,解题的关键是根据参数的不同取值讨论函数的导函数的正负确定函数的单调区间,从而确定最小值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:解答题

已知的图象过点,且.

(1)求的解析式;

(2)已知,求函数上的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图:四棱锥P-ABCD的底面是平行四边形,∠DAB=60°,平面PAB⊥ABD,
AP=2AD=4,PD=$2\sqrt{5}$,E为AD的中点,F为PB的中点.
(Ⅰ) 求证:EF‖平面PCD;
(Ⅱ) 当二面角A-PD-B的余弦值为$\frac{1}{4}$时,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,某简单几何体的一个面ABC内接于圆M,AB是圆M的直径,CF∥BE,BE⊥平面ABC,且AB=2,AC=1,BE+CF=7.
(Ⅰ)求证:AC⊥EF:
(Ⅱ)当CF为何值时,平面AEF与平面ABC所成的锐角取得最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1+lnx}{x}$
(1)若函数在区间(a,a+$\frac{1}{2}$)(其中a>0)上存在极值,求实数a的取值范围;
(2)当x≥1时,求证:不等式f(x)>$\frac{2cos2x}{x+1}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系中,若点(-2,t)在直线x-2y+4=0的上方,则取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.抛物线x=-$\frac{1}{4}$y2的焦点坐标是(  )
A.(-1,0)B.(0,-1)C.(-$\frac{1}{16}$,0)D.(0,-$\frac{1}{16}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.哈三中某兴趣小组为了调查高中生的数学成绩是否与物理成绩有关系,在高二年级随机调查了50名学生,调查结果表明:在数学成绩较好的25人中有18人物理成绩好,另外7人物理成绩一般;在数学成绩一般的25人中有6人物理成绩好,另外19人物理成绩一般.
(Ⅰ) 试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出是否有99.9%把握认为高中生的数学成绩与物理成绩有关系.
数学成绩好数学成绩一般总计
物理成绩好
物理成绩一般
总计
(Ⅱ)  现将4名数学成绩好且物理成绩也好的学生分别编号为1,2,3,4,将4名数学成绩好但物理成绩一般的学生也分别编号1,2,3,4,从这两组学生中各任选1人进行学习交流,求被选取的2名学生编号之和不大于5的概率.
附:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线C:x2=2py(p>0),过其焦点作斜率为1的直线l交抛物线C于M、N两点,且|MN|=16.
(Ⅰ)求抛物线C的方程;
(Ⅱ)已知动圆P的圆心在抛物线C上,且过定点D(0,4),若动圆P与x轴交于A、B两点,求$\frac{|DA|}{|DB|}$+$\frac{|DB|}{|DA|}$的最大值.

查看答案和解析>>

同步练习册答案