分析 (1)由题意可知:直线l 的方程是:k(x+2)+(1+y)=0,令$\left\{{\begin{array}{l}{x+2=0}\\{1+y=0}\end{array}}\right.$,解得$\left\{{\begin{array}{l}{x=-2}\\{y=-1}\end{array}}\right.$,因此无论k 为何值,直线l 过定点(-2,-1);
(2)直线l 在x 轴上截距为$-\frac{1+2k}{k}(k≠0)$,在y 轴上的截距为-(1+2k),求得A,B坐标,则$\left\{\begin{array}{l}{-\frac{1+2k}{k}<0}\\{1+2k>0}\end{array}\right.$,求得k>0,由三角形的面积公式可知:$S=\frac{1}{2}•|{OA}|•|{OB}|=\frac{1}{2}•|{\frac{1+2k}{k}}|•|{1+2k}|=\frac{1}{2}•\frac{{{{(1+2k)}^2}}}{k}$=$\frac{1}{2}(4k+\frac{1}{k}+4)≥\frac{1}{2}(2×2+4)=4$,当$4k=\frac{1}{k}$,即$k=\frac{1}{2}$,“=”成立的条件,即可求得直线l的方程.
解答 解:(1)证明:直线l 的方程是:k(x+2)+(1+y)=0,(2分),
令$\left\{{\begin{array}{l}{x+2=0}\\{1+y=0}\end{array}}\right.$,解得$\left\{{\begin{array}{l}{x=-2}\\{y=-1}\end{array}}\right.$,
∴无论k 为何值,直线l 过定点(-2,-1).(4分)
(2)解:由方程知:直线l 在x 轴上截距为$-\frac{1+2k}{k}(k≠0)$,在y 轴上的截距为-(1+2k),
故:$A(-\frac{1+2k}{k},0),B(0,-(1+2k))$.(6分)
由题意:$\left\{\begin{array}{l}{-\frac{1+2k}{k}<0}\\{1+2k>0}\end{array}\right.$,解得:k>0,
∵$S=\frac{1}{2}•|{OA}|•|{OB}|=\frac{1}{2}•|{\frac{1+2k}{k}}|•|{1+2k}|=\frac{1}{2}•\frac{{{{(1+2k)}^2}}}{k}$,(8分)
=$\frac{1}{2}(4k+\frac{1}{k}+4)≥\frac{1}{2}(2×2+4)=4$,(10分)
当且仅当k>0 且$4k=\frac{1}{k}$,即$k=\frac{1}{2}$,“=”成立的条件,
∴Smin=4,此时l:x+2y+4=0.(12分)
点评 本题考查直线方程的应用,考查三角形的面积公式与基本不等式的综合应用,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{6}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com