精英家教网 > 高中数学 > 题目详情
2.写出y=±x(x≥0)所夹区域(不包括边界)内的角的集合.

分析 直接写出y=±x(x≥0)所夹区域(不包括边界)内的角的集合即可.

解答 解:y=±x(x≥0)所夹区域(不包括边界)内的角的集合为:($2kπ-\frac{π}{4}$,$2kπ+\frac{π}{4}$).k∈Z.

点评 本题考查象限角和轴线角,是基础的会考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.四棱锥P-ABCD的底面是边长为2$\sqrt{2}$的正方形,高为1.其外接球半径为2$\sqrt{2}$,则正方形ABCD的中心与点P之间的距离为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.$\sqrt{2}$或1D.2$\sqrt{2}$或$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点O是三角形ABC的边BC靠近B的一个三等分点,过点O的直线交直线AB、AC分别于M、N;$\overrightarrow{AM}=m\overrightarrow{AB}$,$\overrightarrow{AN}=n\overrightarrow{AC}$,则$\frac{2}{m}+\frac{1}{n}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l:kx+y+1+2k=0(k∈R).
(1)证明:直线l过定点;
(2)若直线l交x轴负半轴于A,交y轴负半轴于B,记△AOB的面积为S,求S的最小值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>1),F1,F2为椭圆的两个焦点,且F1,F2到直线$\frac{x}{a}$$+\frac{y}{b}$=1的距离之和为$\sqrt{3}$b,则其离心率e=$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD.
(Ⅰ)如果P为线段VC的中点,求证:VA∥平面PBD;
(Ⅱ)如果正方形ABCD的边长为2,求A到平面VBD的距离.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:选择题

下列函数中,既是奇函数,又在上为增函数的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.要得到y=sin2x的图象,只需将y=sin(2x-$\frac{π}{4}$)的图象是(  )
A.向右平移$\frac{π}{8}$B.向左平移$\frac{π}{8}$C.向右平移$\frac{π}{4}$D.向左平移$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知正三棱柱ABC-A1B1C1的底面边长是2,D是侧棱CC1的中点,直线AD与侧BB1C1C所成的角为45°.
(1)求此正三棱柱的侧棱长;
(2)求二面角A-BD-C的平面角的正切值;
(3)求点C到平面ABD的距离.

查看答案和解析>>

同步练习册答案