精英家教网 > 高中数学 > 题目详情
5.已知$\overrightarrow{a}$=(8,2),$\overrightarrow{b}$=(-3,m),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则m=-$\frac{3}{4}$.

分析 利用向量共线定理即可得出.

解答 解:∵$\overrightarrow{a}$∥$\overrightarrow{b}$,则8m=-3×2,解得m=-$\frac{3}{4}$.
故答案为:-$\frac{3}{4}$.

点评 本题考查了向量共线定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数f(x)=ex-4x的递减区间为(  )
A.(0,ln4)B.(0,4)C.(-∞,ln4)D.(ln4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知1丈为10尺,该锲体的三视图如图所示,则该锲体的体积为(  )
A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的首项a1=1,且an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$(n∈N*).
(1)证明:数列{$\frac{1}{{a}_{n}}$}是等差数列,并求数列{an}的通项公式;
(2)设bn=anan+1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)点有顶点A,O为坐标原点,以A为圆心与双曲线C的一条渐近线交于两点P,Q,若∠PAQ=60°且$\overrightarrow{OQ}$=2$\overrightarrow{OP}$,则双曲线C的离心率为(  )
A.$\frac{\sqrt{39}}{6}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{7}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{x+1}{{x}^{2}+a}$(a>0).
(1)若f(x)在(1,f(1))处的切线方程为x+2y+b=0,求a+b的值;
(2)若f(x)在区间[1,+∞)上的最大值为$\frac{1}{4}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.直线$\left\{\begin{array}{l}x=tsin20°+3\\ y=-tcos20°\end{array}\right.$(t为参数)的倾斜角为(  )
A.20°B.70°C.110°D.160°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个非零向量.向量$\overrightarrow{a}$=(1,x),向量$\overrightarrow{b}$=(3,1).向量$\overrightarrow{a}⊥\overrightarrow{b}$,则x的值为(  )
A.$\frac{1}{3}$B.3C.$-\frac{1}{3}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若平面向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a|=\sqrt{2},|\overrightarrow b|=2,(\overrightarrow a-\overrightarrow b)⊥\overrightarrow a$
(1)求$\overrightarrow a$与$\overrightarrow b$的夹角θ;
(2)求$|2\overrightarrow a+\overrightarrow b|$.

查看答案和解析>>

同步练习册答案