精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四棱锥的底面为直角梯形, ,且 的中点。

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值。

【答案】(Ⅰ)证明见解析;(Ⅱ)

【解析】试题分析:(Ⅰ)利用空间向量证明面面垂直,只需利用两平面法向量垂直,先根据题意建立坐标系,设立各点坐标,利用方程组解出各面法向量,根据法向量数量积为零得证(Ⅱ)利用空间向量求二面角,先根据题意建立坐标系,设立各点坐标,利用方程组解出各面法向量,根据法向量数量积求夹角,再根据二面角夹角与向量夹角关系得二面角的余弦值

试题解析:

证明:(Ⅰ)以为坐标原点长为单位长度,如图,建立空间直角坐标系,则各点为 ,则 ,故,所以,由题设知,且是平面内的两条相交直线,由此得,在平面,故平面

(Ⅱ)在上取一点,则存在,使,连接 ,所以 。要使,只要,即,解得。可知当时, 点坐标为,能使,此时, ,所以。由 ,所以,故所求二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.
(1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(3)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)= ,若关于x的方程[f(x)]2+af(x)﹣a﹣1=0(a∈R)有且只有7个不同实数根,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点M(x,y)在|x|≤1,|y|≤1时按均匀分布出现,试求满足:
(1)x+y≥0的概率;
(2)x+y<1的概率;
(3)x2+y2≥1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列不等式中,解集为R的是( )
A.x2+4x+4>0
B.|x|>0
C.x2>﹣x
D.x2﹣x+ ≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F为椭圆C: + =1的右焦点,椭圆C上任意一点P到点F的距离与点P到直线l:x=m的距离之比为 ,求:
(1)直线l方程;
(2)设A为椭圆C的左顶点,过点F的直线交椭圆C于D、E两点,直线AD、AE与直线l分别相交于M、N两点.以MN为直径的是圆是否恒过一定点,若是,求出定点坐标,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C= . (Ⅰ)若△ABC的面积等于 ,求a,b;
(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1时,探究函数的单调性

2若关于的不等式上恒成立的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A,B,C为△ABC的三个内角,且其对边分别为a,b,c,若c2+b2+cb=a2
(1)求A;
(2)若a=2 ,b+c=4,求△ABC的面积.

查看答案和解析>>

同步练习册答案