精英家教网 > 高中数学 > 题目详情
8.已知数列{an}的通项公式为an=-2n2+21n,则该数列中的数值最大的项是(  )
A.第5项B.第6项C.第4项或第5项D.第5项或第6项

分析 利用二次函数的单调性即可得出.

解答 解:∵数列{an}的通项公式an=-2n2+21n=-2(n-$\frac{21}{4}$)2+$\frac{441}{8}$
∴当n=5时,an取得最大值.
故该数列第5项最大,
故选:A.

点评 本题考查了二次函数的单调性、数列的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.f(x)=3sin(-$\frac{1}{5}$x+$\frac{3π}{10}$),若实数m满足f($\sqrt{-{m}^{2}+2m+3}$)>f($\sqrt{-{m}^{2}+4}$),则m的取值范围是[-1,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=2$\sqrt{x-1}$-x+2的值域是(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=$\left\{\begin{array}{l}{x(x-2),x≤0}\\{-ax(x+2),x>0}\end{array}\right.$是一个奇函数,则满足f(2-x2)+f(x)<0的x的取值范围是(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个顶点为A,虚轴的一个端点为B,若直线AB与该双曲线的一条渐近线垂直,则双曲线C的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{2}$D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知如图底面ABC为直角三角形,∠C=90°,PA⊥平面ABC,求证:平面PBC⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:函数f(x)=$\frac{k-{3}^{x}}{1+k•{3}^{x}}$是奇函数的充分必要条件为k=1;命题q:曲线x2+y2=1围成的面积大于π.下列是真命题的是(  )
A.p∧qB.(¬p)∧(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数y=f(x),x∈[a,b],函数g(x)=kx+t,记h(x)=|f(x)-g(x)|.把函数h(x)的最大值L称为函数f(x)的“线性拟合度”.
(1)设函数f(x)=$\frac{2}{x}$,x∈[1,4],g(x)=-x+2,求此时函数f(x)的“线性拟合度”L;
(2)若函数y=f(x),x∈[a,b]的值域为[m,n](m<n),g(x)=t,求证:L≥$\frac{n-m}{2}$;
(3)设f(x)=2$\sqrt{x}$,x∈[1,4],求k的值,使得函数f(x)的“线性拟合度”L最小,并求出L的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.集合A={y|y=2k-1,k∈Z},集合B={y|y=4k-1,k∈Z},则A∩B=(  )
A.{y|y=2k+1,k∈Z}B.{y|y=4k+1,k∈Z}C.{y|y=4k-1,k∈Z}D.{y|y=2k-1,k∈Z}

查看答案和解析>>

同步练习册答案