精英家教网 > 高中数学 > 题目详情
18.集合A={y|y=2k-1,k∈Z},集合B={y|y=4k-1,k∈Z},则A∩B=(  )
A.{y|y=2k+1,k∈Z}B.{y|y=4k+1,k∈Z}C.{y|y=4k-1,k∈Z}D.{y|y=2k-1,k∈Z}

分析 将集合B变形,得到B={y|y=2(2k-1)+1,k∈Z},从而判断A,B的交集.

解答 解:集合B={y|y=4k-1,k∈Z}={y|y=2(2k-1)+1,k∈Z},2k-1为奇数,因此B⊆A,所以A∩B=B;
故选:C.

点评 本题考查了集合的交集;关键是对B正确变形,发现与A的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知数列{an}的通项公式为an=-2n2+21n,则该数列中的数值最大的项是(  )
A.第5项B.第6项C.第4项或第5项D.第5项或第6项

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设i是虚数单位,若复数$\frac{a-2i}{1+i}$的实部与虚部相等,则实数a的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)是定义域为R上的奇函数,任意m,n∈(0,+∞)且m≠n时,都有$\frac{f(m)-f(n)}{m-n}$>0,f(2)=0,则不等式$\frac{f(x)}{x}$<0的解集是(  )
A.{x|x<-2或0<x<2}B.{x|-2<x<0或x>2}C.{x|-2<x<2}D.{x|-2<x<0或0<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设x(1-x)6=a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7,则2a1+4a2+8a3+16a4+32a5+64a6+128a7等于(  )
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设随机变量X服从[1,4]上的均匀分布,则P{2≤x≤3}=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}中,a1=1,且当n∈N*时,有$\frac{1}{n+1}$a1+$\frac{2}{n+1}$a2+$\frac{3}{n+1}$a3+…+$\frac{n}{n+1}$an=$\frac{1}{2}$an+1,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{{x}^{2}}{{x}^{2}+1}$,设f(n)=an(n∈N+),求证:$\frac{1}{2}$≤an<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知过原点O的动直线l与圆C:(x+1)2+y2=4交于A、B两点.
(Ⅰ)若|AB|=$\sqrt{15}$,求直线l的方程;
(Ⅱ)x轴上是否存在定点M(x0,0),使得当l变动时,总有直线MA、MB的斜率之和为0?若存在,求出x0的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案