分析 由条件根据奇函数的性质求得a的值,从而得到f(x)的解析式;由所给的不等式结合f(x)的图象可得x的不等式,解此二次不等式,求得x的范围.
解答
解:函数f(x)=$\left\{\begin{array}{l}{x(x-2),x≤0}\\{-ax(x+2),x>0}\end{array}\right.$是一个奇函数,
设x<0,则-x>0,
且f(-x)=-f(x),即-a(-x)(-x+2)=-x(x-2),
化简可得ax(2-x)=x(2-x),∴a=1.
即f(x)=$\left\{\begin{array}{l}{x(x-2),x≤0}\\{-x(x+2),x>0}\end{array}\right.$,故函数f(x)为R上的减函数,它的图象如图.
由f(2-x2)+f(x)<0,可得2-x2>-x,即x2-x-2<0,
求得x∈(-1,2).
故答案为:(-1,2).
点评 本题主要考查分段函数的应用,函数的奇偶性的性质,函数的单调性的应用,二次不等式的解法,体现了转化、数形结合的数学思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ±1 | B. | 1 | C. | -1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第5项 | B. | 第6项 | C. | 第4项或第5项 | D. | 第5项或第6项 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x<-2或0<x<2} | B. | {x|-2<x<0或x>2} | C. | {x|-2<x<2} | D. | {x|-2<x<0或0<x<2} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com