精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和为Sn , 且Sn= nan+1 , 其中a1=1
(1)求数列{an}的通项公式;
(2)若bn= + ,数列{bn}的前n项和为Tn , 求证:Tn<2n+

【答案】
(1)解:令n=1,得 ,即 ,由已知a1=1,得a2=2

把式子 中的n用n﹣1替代,得到

可得

,即

即得:

所以:

又∵a2=2,所以∵an=n(n≥2)

又∵a1=1,∴an=n


(2)解:由(1)知

又∵


【解析】(1)求出数列的首项,通过 ,得到数列的递推关系式,利用累加法求数列{an}的通项公式;(2)化简bn= + ,为 ,然后求解数列{bn}的前n项和为Tn , 即可证明:Tn<2n+
【考点精析】根据题目的已知条件,利用数列的通项公式的相关知识可以得到问题的答案,需要掌握如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为(
A.锐角三角形
B.直角三角形
C.钝角三角形
D.由增加的长度决定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式x2﹣4x>2ax+a对一切实数x都成立,则实数a的取值范围是(
A.(1,4)
B.(﹣4,﹣1)
C.(﹣∞,﹣4)∪(﹣1,+∞)
D.(﹣∞,1)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列1,a1 , a2 , 9是等差数列,数列1,b1 , b2 , b3 , 9是等比数列,则 =(
A.﹣
B.
C.±
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣3)2+(y﹣4)2=4. (Ⅰ) 若直线l过点A(2,3)且被圆C截得的弦长为2 ,求直线l的方程;
(Ⅱ) 若直线l过点B(1,0)与圆C相交于P,Q两点,求△CPQ的面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是等差数列,{bn}是各项均为正数的等比数列,满足a1=b1=1,b2﹣a3=2b3 , a3﹣2b2=﹣1
(1)求数列{an}和{bn}的通项公式
(2)设cn=an+bn , n∈N* , 求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB. (Ⅰ)证明:A=2B
(Ⅱ)若△ABC的面积S= ,求角A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是递增的等差数列,a2 , a4是方程x2﹣5x+6=0的根. (I)求{an}的通项公式;
(II)求数列{ }的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面内到定点F(0,1)和定直线l:y=﹣1的距离之和等于4的动点的轨迹为曲线C,关于曲线C的几何性质,给出下列四个结论: ①曲线C的方程为x2=4y;
②曲线C关于y轴对称
③若点P(x,y)在曲线C上,则|y|≤2;
④若点P在曲线C上,则1≤|PF|≤4
其中,所有正确结论的序号是

查看答案和解析>>

同步练习册答案