精英家教网 > 高中数学 > 题目详情
13.长郡中学早上8点开始上课,若学生小典与小方匀在早上7:40至8:00之间到校,且两人在该时间段的任何时刻到校都是等可能的,则小典比小方至少早5分钟到校的概率为(  )
A.$\frac{9}{32}$B.$\frac{1}{2}$C.$\frac{3}{64}$D.$\frac{5}{64}$

分析 设小典到校的时间为x,小方到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|40≤x≤60,40≤y≤60}是一个矩形区域,则小典比小方至少早5分钟到校事件A={(x,y)|y-x≥5}作出符合题意的图象,由图根据几何概率模型的规则求解即可.

解答 解:设小典到校的时间为x,小方到校的时间为y.
(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|40≤x≤60,40≤y≤60}是一个矩形区域,
对应的面积S=20×20=400,
则小典比小方至少早5分钟到校事件A={x|y-x≥5}作出符合题意的图象,
则符合题意的区域为△ABC,联立$\left\{\begin{array}{l}{y-x=5}\\{y=60}\end{array}\right.$得C(55,60),
由$\left\{\begin{array}{l}{y-x=5}\\{x=40}\end{array}\right.$得B(40,45),
则S△ABC=$\frac{1}{2}$×15×15,由几何概率模型可知小典比小方至少早5分钟到校的概率为$\frac{\frac{1}{2}×15×15}{20×20}$=$\frac{9}{32}$,
故选:A.

点评 本题考查几何概率模型与模拟方法估计概率,求解的关键是掌握两种求概率的方法的定义及规则,求出对应区域的面积是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.AC是圆的直径,B、D在圆上且AB=$\sqrt{3}$,AD=$\sqrt{5}$,则$\overrightarrow{AC}$$•\overrightarrow{BD}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=sin(2x-$\frac{π}{3}$),x∈[-$\frac{π}{2}$,π],则以下结论正确的是(  )
A.函数f(x)在[-$\frac{π}{2}$,0]上单调递减B.函数f(x)在[0,$\frac{π}{2}$]上单调递增
C.函数f(x)在[$\frac{π}{2}$,$\frac{5π}{6}$]上单调递减D.函数f(x)在[$\frac{5π}{6}$,π]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知过点P0(-1,2)的直线的参数方程为$\left\{\begin{array}{l}{x=-1+3t}\\{y=2-4t}\end{array}\right.$(t为参数),与(y-2)2-x2=1交于A、B两点,求弦|AB|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知(a-x)5=a0+a1x+a2x2+…+a5x5,若a2=270,则a=(  )
A.3B.2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,一竖立在水平对面上的圆锥形物体的母线长为4m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处,则该小虫爬行的最短路程为$4\sqrt{3}m$,则圆锥底面圆的半径等于(  )
A.1mB.$\frac{3}{2}m$C.$\frac{4}{3}m$D.2m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an}的公差为2,且a1,a1+a2,2(a1+a4)成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an+2n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知递增的等差数列{an}(n∈N*)的首项a1=1,且a1,a2,a4成等比数列,则数列{an}的通项公式an=n;a4+a8+a12+…+a4n+4=2n2+6n+4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=$\frac{x-1}{x-3}$,g(x)=$\frac{x-3}{\sqrt{x-1}}$,则f(x)•g(x)=$\sqrt{x-1}$,其中x>1且x≠3.

查看答案和解析>>

同步练习册答案