精英家教网 > 高中数学 > 题目详情

【题目】已知焦点在x正半轴上,顶点为坐标系原点的抛物线过点A(1,﹣2).
(1)求抛物线的标准方程;
(2)过抛物线的焦点F的直线l与抛物线交于两点M、N,且△MNO(O为原点)的面积为2 ,求直线l的方程.

【答案】
(1)解:令抛物线的方程为y2=2px(p>0).将点A(1,﹣2)的坐标代入方程,得p=2,

故所求抛物线的标准方程为y2=4x


(2)解:若直线l⊥x轴,则M(1,2),N(1,﹣2),此时△MNO的面积为2,不合题设;

若直线l与x轴不垂直,令M(x1,y1),N(x2,y2),l:y=k(x﹣1)(k≠0),将其代入抛物线方程y2=4x,并整理得k2x2﹣2(k2+2)x+k2=0,

则x1+x2=2+ ,x1x2=1.

于是|MN|=x1+x2+p=

又原点到直线l的距离为d=

则2 = |MN|d=

解得,k=﹣1或1.

综上,所求直线l的方程为y=﹣x+1或y=x﹣1


【解析】(1)令抛物线的方程为y2=2px(p>0).将点A(1,﹣2)的坐标代入方程,得p的值,可得抛物线C的方程;(2)分类讨论,设直线的方程,与抛物线方程联立,利用韦达定理,结合面积公式,即可求直线l的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=﹣4x2+4ax﹣4a﹣a2在区间[0,1]内有一最大值﹣5,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)证明: ,直线都不是曲线的切线;

(Ⅱ)若,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(
A.
B.y=ex
C.y=lg|x|
D.y=﹣x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体名学生中随机抽取了名学生的体检表,并得到如图的频率分布直方图.

年级名次

是否近视

近视

不近视

(1)若直方图中后四组的频数成等差数列,试估计全年级视力在以下的人数;

(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在名和名的学生进行了调查,得到右表中数据,根据表中的数据,能否在犯错的概率不超过的前提下认为视力与学习成绩有关系?

(3)在(Ⅱ)中调查的名学生中,按照分层抽样在不近视的学生中抽取了人,进一步调查他们良好的护眼习惯,并且在这人中任取人,记名次在的学生人数为,求的分布列和数学期望.

7.879

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC
(1)求角C大小;
(2)求 sinA﹣cos(B+ )的最大值,并求取得最大值时角A,B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为

A. 60 B. 72 C. 84 D. 96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x3+ax2﹣x﹣1在(﹣∞,+∞)上是单调函数,则实数a的取值范围是(  )
A.[﹣]
B.(﹣
C.(﹣∞,﹣)∪( , +∞)
D.(﹣∞,﹣)∩( , +∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为常数),函数为自然对数的底).

(1)讨论函数的极值点的个数;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案