【题目】已知函数 . (Ⅰ)当m=8时,求f(﹣4)的值;
(Ⅱ)当m=8且x∈[﹣8,8]时,求|f(x)|的最大值;
(Ⅲ)对任意的实数m∈[0,2],都存在一个最大的正数K(m),使得当x∈[0,K(m)]时,不等式|f(x)|≤2恒成立,求K(m)的最大值以及此时相应的m的值.
【答案】解:(Ⅰ) 当m=8时,f(﹣4)=f(﹣2)=f(0)=77 (Ⅱ)函数 .
0≤x≤8时,函数f(x)= .
f(x)=x2﹣8x+7,当x=4时,函数取得最小值﹣9,x=0或x=8时函数取得最大值:7,
f(x)∈[﹣9,7]7
﹣8≤x<0时,f(x)=f(x+2),如图函数图象,f(x)∈(﹣5,7]7
所以x∈[﹣8,8]时,|f(x)|max=97
(能清晰的画出图象说明|f(x)|的最大值为9,也给3分)
(Ⅲ) ①当m=0时,f(x)=x2﹣1(x≥0),要使得|f(x)|≤2,
只需x2﹣1≤2,得 ,即 ,此时m=07
②当0<m≤2时,对称轴 ,要使得|f(x)|≤2,
首先观察f(x)=x2﹣mx+m﹣1(x≥0)与y=﹣2的位置关系,
由x2﹣mx+m﹣1≥﹣2对于0<m≤2恒成立,7
故K(m)的值为x2﹣mx+m﹣1=2的较大根x2 ,
解得 7
又 =
= 1
故 ,
则显然K(m)在m∈(0,2]上为增函数,
所以
由①②可知,K(m)的最大值为 ,此时m=2
【解析】(Ⅰ)通过m=8时,直接利用分段函数求f(﹣4)的值;(Ⅱ)当m=8且x∈[﹣8,8]时,画出函数的图象,利用二次函数以及周期函数,转化求解函数|f(x)|的最大值;(Ⅲ) ①当m=0时,f(x)=x2﹣1(x≥0),转化求解即可,②当0<m≤2时,求出对称轴,要使得|f(x)|≤2,判断f(x)=x2﹣mx+m﹣1(x≥0)与y=﹣2的位置关系, 通过比较根的大小,利用函数的单调性求解即可.
【考点精析】本题主要考查了函数的最值及其几何意义的相关知识点,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知圆C:(x﹣3)2+(y﹣4)2=4,直线l过定点A(1,0).
(1)若l与圆C相切,求l的方程;
(2)若l与圆C相交于P、Q两点,若|PQ|=2 ,求此时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶函数,则下列结论成立的是( )
A.f(1)<f( )<f( )
B.f( )<f(1)<f( )??
C.f( )<f( )<f(1)
D.f( )<f(1)<f( )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若不等式lg ≥(x﹣1)lg3对任意x∈(﹣∞,1]恒成立,则a的取值范围是( )
A.(﹣∞,0]
B.[1,+∞)
C.[0,+∞)
D.(﹣∞,1]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 (a>b>0)的离心率为 ,以原点为圆心,椭圆的短半轴为半径的圆与直线 相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P(4,0),M,N是椭圆C上关于x轴对称的任意两个不同的点,连接PN交椭圆C于另一点E,求直线PN的斜率的取值范围;
(Ⅲ)在(Ⅱ)的条件下,证明直线ME与x轴相交于定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某科研小组研究发现:一棵水果树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系: .此外,还需要投入其它成本(如施肥的人工费等)百元.已知这种水果的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水果树获得的利润为(单位:百元).
(1)求的函数关系式;
当投入的肥料费用为多少时,该水果树获得的利润最大?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1﹣ABCD,其上是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD﹣A2B2C2D2 .
(1)证明:直线B1D1⊥平面ACC2A2;
(2)现需要对该零部件表面进行防腐处理,已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.
(1)求函数g(x)的解析式;
(2)解不等式g(x)≥f(x)-|x-1|;
(3)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com