精英家教网 > 高中数学 > 题目详情

【题目】某科研小组研究发现:一棵水果树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系: .此外,还需要投入其它成本(如施肥的人工费等)百元.已知这种水果的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水果树获得的利润为(单位:百元).

(1)求的函数关系式;

当投入的肥料费用为多少时,该水果树获得的利润最大?最大利润是多少?

【答案】(1)(2)当投入的肥料费用为300元时,种植该果树获得的最大利润是4300元.

【解析】试题分析:(1)收入等于售价乘以产量: 减去成本即为利润(2)求分段函数最值,先求各段函数最大值,再取两者最大值中较大的一个是二次函数最值,注意研究对称轴与定义区间位置关系,一个是对勾函数,利用基本不等式求最值,注意等于号是否取到

试题解析:(1)

(2)当

当且仅当时,即时等号成立

答:当投入的肥料费用为300元时,种植该果树获得的最大利润是4300元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l过点P(2,1)
(1)点A(﹣1,3)和点B(3,1)到直线l的距离相等,求直线l的方程;
(2)若直线l与x正半轴、y正半轴分别交于A,B两点,且△ABO的面积为4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,线段AB在平面α内,线段BD⊥AB,线段AC⊥α,且AB= ,AC=BD=12,CD= ,求线段BD与平面α所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(文科做)已知函数f(x)=x﹣ ﹣(a+2)lnx,其中实数a≥0.
(1)若a=0,求函数f(x)在x∈[1,3]上的最值;
(2)若a>0,讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 . (Ⅰ)当m=8时,求f(﹣4)的值;
(Ⅱ)当m=8且x∈[﹣8,8]时,求|f(x)|的最大值;
(Ⅲ)对任意的实数m∈[0,2],都存在一个最大的正数K(m),使得当x∈[0,K(m)]时,不等式|f(x)|≤2恒成立,求K(m)的最大值以及此时相应的m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求函数的单调区间;

)当时,证明:(其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位: )和年利润(单位:千元)的影响.对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.

表中.

(1)根据散点图判断哪一个适宜作为年销售量关于年宣传费的回归类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程;

(3)已知这种产品的利润的的关系为.根据(2)的结果回答下列问题:

(ⅰ)年宣传费时,年销售量及年利润的预报值是多少?

(ⅱ)年宣传费为何值时,年利润的预报值最大?

附:对于一组数据,其回归直线的的斜率和截距的最小二乘估计为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,有一块半径长为1米的半圆形钢板,现要从中截取一个内接等腰 梯形部件ABCD,设梯形部件ABCD的面积为平方米.

1按下列要求写出函数关系式:

,将表示成的函数关系式;

,将表示成的函数关系式.

2求梯形部件ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的图象如图所示,为了得到g(x)=sinωx的图象,则只要将f(x)的图象(
A.向左平移 个单位长度
B.向右平移 个单位长度
C.向右平移 个单位长度
D.向左平移 个单位长度

查看答案和解析>>

同步练习册答案