精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 (a>b>0)的离心率为 ,以原点为圆心,椭圆的短半轴为半径的圆与直线 相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P(4,0),M,N是椭圆C上关于x轴对称的任意两个不同的点,连接PN交椭圆C于另一点E,求直线PN的斜率的取值范围;
(Ⅲ)在(Ⅱ)的条件下,证明直线ME与x轴相交于定点.

【答案】解:(Ⅰ)由题意知 ,所以 ,即a2=4b2 , ∴a=2b
又因为 ,∴a=2,故椭圆C的方程为
(Ⅱ)由题意知直线PN的斜率存在,设直线PN的方程为y=k(x﹣4).
得(4k2+1)x2﹣32k2x+64k2﹣4=0.①
由△=(﹣32k22﹣4(4k2+1)(64k2﹣4)>0,得12k2﹣1<0,∴
又k=0不合题意,所以直线PN的斜率的取值范围是:
(Ⅲ)设点N(x1 , y1),E(x2 , y2),则M(x1 , ﹣y1).
直线ME的方程为 .令y=0,得
将y1=k(x1﹣4),y2=k(x2﹣4)代入整理,得 .②
由①得 代入②整理,得x=1.
所以直线ME与x轴相交于定点(1,0)
【解析】(Ⅰ)由题意知 ,所以a2=4b2 , 由此可知椭圆C的方程为 .(Ⅱ)由题意知直线PN的斜率存在,设直线PN的方程为y=k(x﹣4).由题设得(4k2+1)x2﹣32k2x+64k2﹣4=0.由此入手可知直线PN的斜率的取值范围是: .(Ⅲ)设点N(x1 , y1),E(x2 , y2),则M(x1 , ﹣y1).直线ME的方程为 .令y=0,得 .由此入手可知直线ME与x轴相交于定点(1,0).
【考点精析】根据题目的已知条件,利用直线的斜率的相关知识可以得到问题的答案,需要掌握一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知F1、F2为双曲线 =1(a>0,b>0)的左、右焦点,过F2作双曲线渐近线的垂线,垂足为P,若|PF1|2﹣|PF2|2=c2 . 则双曲线离心率的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,判断函数在区间上的单调性;

(2)求证:曲线不存在两条互相平行且倾斜角为锐角的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标系与参数方程

在直角坐标系xOy中,曲线M的参数方程为 (α为参数),若以直角坐标系中的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为 (t为参数).

(1)求曲线M的普通方程和曲线N的直角坐标方程;

(2)若曲线N与曲线M有公共点,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2a﹣1<x<3a+1},集合B={x|﹣1<x<4}.
(1)若AB,求实数a的取值范围;
(2)是否存在实数a,使得A=B?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 . (Ⅰ)当m=8时,求f(﹣4)的值;
(Ⅱ)当m=8且x∈[﹣8,8]时,求|f(x)|的最大值;
(Ⅲ)对任意的实数m∈[0,2],都存在一个最大的正数K(m),使得当x∈[0,K(m)]时,不等式|f(x)|≤2恒成立,求K(m)的最大值以及此时相应的m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数关于实数的不等式的解集为

(1)当解关于的不等式

(2)是否存在实数使得关于的函数)的最小值为若存在求实数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在圆x2+y2=9上任取一点P,过点P作y轴的垂线段PD,D为垂足,当P为圆与y轴交点时,P与D重合,动点M满足 =2
(1)求点M的轨迹C的方程;
(2)抛物线C′的顶点在坐标原点,并以曲线C在y轴正半轴上的顶点为焦点,直线y=x+3与抛物线C′交于A、B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数f(x)在 上的最大值与最小值;
(2)已知 ,x0∈( ),求cos4x0的值.

查看答案和解析>>

同步练习册答案