精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数关于实数的不等式的解集为

(1)当解关于的不等式

(2)是否存在实数使得关于的函数)的最小值为若存在求实数的值;若不存在,说明理由.

【答案】(1)当原不等式的解集为;当原不等式的解集为.(2)

【解析】

试题分析:(1)由二次不等式解集与二次方程根的关系得:的两根为,从而,解得,再化简不等式,因式分解:,最后根据两根2与大小关系,分三种情况讨论不等式解集(2)先化简函数,为一元二次函数,其中,再根据对称轴与定义区间位置关系研究函数最小值:因为,所以当最小值

试题解析:(1)由不等式的解集为关于的方程的两根为

由根与系数关系,得

所以原不等式化为

原不等式化为解得

原不等式化为解得

时,原不等式化为解得

综上所述:

原不等式的解集为

原不等式的解集为

(2)假设存在满足条件的实数

由(1)得:

),则,(),

对称轴

因为所以

所以函数单调递减

所以当的最小值为解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,F1 , F2分别是椭圆C: =1(a>b>0)的左、右焦点,A是椭圆C的上顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°

(1)求椭圆C的离心率;
(2)若a=2,求△AF1B的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,左焦点为F1(﹣1,0),右准线方程为:x=4.
(1)求椭圆C的标准方程;
(2)若椭圆C上点N到定点M(m,0)(0<m<2)的距离的最小值为1,求m的值及点N的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 (a>b>0)的离心率为 ,以原点为圆心,椭圆的短半轴为半径的圆与直线 相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P(4,0),M,N是椭圆C上关于x轴对称的任意两个不同的点,连接PN交椭圆C于另一点E,求直线PN的斜率的取值范围;
(Ⅲ)在(Ⅱ)的条件下,证明直线ME与x轴相交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80﹣2t(件),价格近似满足于 (元).
(Ⅰ)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;
(Ⅱ)求该种商品的日销售额y的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1﹣ABCD,其上是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD﹣A2B2C2D2

(1)证明:直线B1D1⊥平面ACC2A2
(2)现需要对该零部件表面进行防腐处理,已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形的中心为直线x﹣y+1=0和2x+y+2=0的交点,一条边所在的直线方程是x+3y﹣5=0,求其他三边所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点P满足 + =2
(1)求动点P的轨迹F1 , F2的方程;
(2)设直线l与曲线C交于A,B两点,坐标原点O到直线l的距离为 ,求△OAB面 积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)

经常使用

偶尔或不用

合计

30岁及以下

70

30

100

30岁以上

60

40

100

合计

130

70

200

(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?

(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.

(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;

(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.

参考公式: ,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

同步练习册答案