¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÔÚÖ±½ÇÌÝÐÎABCDÖУ¬AD¡ÎBC£¬DA¡ÍAB£¬AD=3£¬AB=4£¬BC=
3
£¬µãEÔÚÏß¶ÎABµÄÑÓ³¤ÏßÉÏ£®ÈôÇúÏß¶ÎDE£¨º¬Á½¶Ëµã£©ÎªÄ³ÇúÏßLÉϵÄÒ»²¿·Ö£¬ÇÒÇúÏßLÉÏÈÎÒ»µãµ½A¡¢BÁ½µãµÄ¾àÀëÖ®ºÍ¶¼ÏàµÈ£®
£¨1£©½¨Á¢Ç¡µ±µÄÖ±½Ç×ø±êϵ£¬ÇóÇúÏßLµÄ·½³Ì£»
£¨2£©¸ù¾ÝÇúÏßLµÄ·½³Ìд³öÇúÏß¶ÎDE£¨º¬Á½¶Ëµã£©µÄ·½³Ì£»
£¨3£©ÈôµãMΪÇúÏß¶ÎDE£¨º¬Á½¶Ëµã£©ÉϵÄÈÎÒ»µã£¬ÊÔÇó|MC|+|MA|µÄ×îСֵ£¬²¢Çó³öÈ¡µÃ×îСֵʱµãMµÄ×ø±ê£®
·ÖÎö£º£¨1£©ÓÉÌâÒ⣬ÏȽ¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¬ÀûÓÃÇúÏߵķ½³ÌÕâÒ»¸ÅÄîÇóÆä¶¯µãµÄ¹ì¼£·½³Ì£»
£¨2£©ÓÉÌâÒâÖªxD£¼x£¼xE£¬y¡Ý0£¬¶øxD=xA=-2£¬xE=4£¬´Ó¶øµÃ³öËùÇóÇúÏß¶ÎDEµÄ·½³Ì£¬ÀûÓÃÇúÏߵķ½³ÌÕâÒ»¸ÅÄîÇóÆä¶¯µãµÄ¹ì¼£·½³Ì£¬Òª×¢ÒâÇó½â·½³ÌÖ®ºóÒªÓÐÌâÒâÈ¥ÅÅÔÓ£»
£¨3£©ÓÉÍÖÔ²µÄ¶¨Òå¼°µãMΪÇúÏß¶ÎDE£¨º¬Á½¶Ëµã£©ÉϵÄÈÎÒ»µã¿ÉÖª|MA|+|MB|=2a=8£¬¼´|MA|=8-|MB|£¬Ôò|MC|+|MA|=8+|MC|-|MB|¡Ý8-|BC|=8-2
3
¼´¿ÉÇóµÃ|MC|+|MA|ÓÐ×îСֵ£®
½â´ð£º½â£¨1£©Èçͼ£¬ÒÔABËùÔÚµÄÖ±ÏßΪxÖᣬÆä´¹Ö±Æ½·ÖÏßΪyÖᣬ½¨Á¢ËùʾµÄÖ±½Ç×ø±êϵ£¬
ÔòA(-2£¬0)£¬B(2£¬0)£¬C(2£¬
3
)£¬D(-2£¬3)
£¬|DA|=3£¬|DB|=5£®
É趯µãM£¨x£¬y£©ÎªÇúÏßLÉϵÄÈÎÒ»µã£¬
Ôò|MA|+|MB|=|DA|+|DB|=8£¬¾«Ó¢¼Ò½ÌÍø
¼´
(x+2)2+y2
+
(x-2)2+y2
=8

ÕûÀíµÃ
x2
16
+
y2
12
=1
£¬ÎªËùÇóÇúÏßLµÄ·½³Ì
£¨2£©ÓÉÌâÒâÖªxD£¼x£¼xE£¬y¡Ý0£¬
¶øxD=xA=-2£¬xE=4
ÔòËùÇóÇúÏß¶ÎDEµÄ·½³ÌΪ
x2
16
+
y2
12
=1(-2¡Üx¡Ü4£¬y¡Ý0)

£¨3£©ÓÉÍÖÔ²µÄ¶¨Òå¼°µãMΪÇúÏß¶ÎDE£¨º¬Á½¶Ëµã£©ÉϵÄÈÎÒ»µã¿ÉÖª|MA|+|MB|=2a=8£¬¼´|MA|=8-|MB|£¬
Ôò|MC|+|MA|=8+|MC|-|MB|¡Ý8-|BC|=8-2
3
£¬
µ±ÇÒ½öµ±µãMλÓÚÏß¶ÎBCµÄ½»µã´¦Ê±µÈºÅ³ÉÁ¢£¬
ÓÉBC¡ÍABÖª´ËʱµãMµÄºá×ø±êΪ2£¬ÔòÆä×Ý×ø±êΪ3£¬
¼´µ±µãMµÄ×ø±êΪ£¨2£¬3£©Ê±|MC|+|MA|ÓÐ×îСֵ8-2
3
£®
µãÆÀ£ºÖص㿼²éÁËÀûÓÃÇúÏߵķ½³ÌÕâÒ»¸ÅÄÏȽ¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¬È»ºóÀûÓö¨Òå·¨ÇóÆä¶¯µãµÄ¹ì¼£·½³Ì£¬²¢½øÐÐʵ¼ÊÎÊÌâµÄÅÅÔÓ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÔÚÖ±½ÇÌÝÐÎABCDÖУ¬¡ÏA=¡ÏD=90¡ã£¬AB£¼CD£¬SD¡ÍÆ½ÃæABCD£¬AB=AD=a£¬SD=
2
a£®
£¨¢ñ£©ÇóÖ¤£ºÆ½ÃæSAB¡ÍÆ½ÃæSAD£»
£¨¢ò£©ÉèSBµÄÖеãΪM£¬ÇÒDM¡ÍMC£¬ÊÔÇó³öËÄÀâ×¶S-ABCDµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚÖ±½ÇÌÝÐÎABCPÖУ¬BC¡ÎAP£¬AB¡ÍBC£¬CD¡ÍAP£¬AD=DC=PD=2£®µãE¡¢F·Ö±ðÊÇPC¡¢BDµÄÖе㣬ÏÖ½«¡÷PDCÑØCDÕÛÆð£¬Ê¹PD¡ÍÆ½ÃæABCD£¬
£¨1£©ÇóÖ¤£ºEF¡ÎÆ½ÃæPAD£»
£¨2£©ÇóµãAµ½Æ½ÃæPBCµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚÖ±½ÇÌÝÐÎABCDÖУ¬AB¡ÎCD£¬AD=CD=1£¬AB=3£¬¶¯µãPÔÚBCDÄÚÔ˶¯£¨º¬±ß½ç£©£¬Éè
AP
=¦Á
AD
+¦Â
AB
£¬Ôò¦Á+¦ÂµÄ×î´óÖµÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚÖ±½ÇÌÝÐÎABCDÖУ¬ÒÑÖªBC¡ÎAD£¬AB¡ÍAD£¬AB=4£¬BC=2£¬AD=4£¬ÈôPΪCDµÄÖе㣬Ôò
PA
PB
µÄֵΪ
5
5
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚÖ±½ÇÌÝÐÎABCDÖУ¬AB¡ÎCD£¬AB¡ÍAD£¬ÇÒAD=1£¬AB=2£¬CD=3£¬E¡¢F·Ö±ðΪÏß¶ÎCD¡¢ABÉϵĵ㣬ÇÒEF¡ÎAD£®½«ÌÝÐÎÑØEFÕÛÆð£¬Ê¹µÃÆ½ÃæADEF¡ÍÆ½ÃæBCEF£¬ÕÛºóBDÓëÆ½ÃæADEFËù³É½ÇÕýÇÐֵΪ
2
2
£®
£¨¢ñ£©ÇóÖ¤£ºBC¡ÍÆ½ÃæBDE£»
£¨¢ò£©ÇóÆ½ÃæBCEFÓëÆ½ÃæABDËù³É¶þÃæ½Ç£¨Èñ½Ç£©µÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸