精英家教网 > 高中数学 > 题目详情
一顶点在坐标原点,焦点在x轴上的抛物线截直线2x-y-4=0所得的弦长为3
5
,求抛物线的方程.
设抛物线方程为y2=2px(p≠0),
将直线方程y=2x-4代入,并整理得2x2-(8+p)x+8=0.
设方程的两个根为x1,x2,则根据韦达定理有x1+x2=
8+p
2
,x1x2=4.
由弦长公式,得(3
5
2=(1+22)[(x1+x22-4x1x2],
即9=(
8+p
2
2-16.
整理得p2+16p-36=0,
解得p=2,或p=-18,此时△>0.
故所求的抛物线方程为y2=4x,或y2=-36x.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知点P是抛物线y2=16x上的一点,它到对称轴的距离为12,F是抛物线的焦点,则|PF|=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线y2=4x的焦点,方向向量为(1,
3
)
的直线方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线C是平面内与定点F(2,0)和定直线x=-2的距离的积等于4的点的轨迹.给出下列四个结论:
①曲线C过坐标原点;
②曲线C关于x轴对称;
③曲线C与y轴有3个交点;
④若点M在曲线C上,则|MF|的最小值为2(
2
-1)

其中,所有正确结论的序号是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为(  )
A.y=x-1或y=-x+1B.y=
3
3
(x-1)或y=-
3
3
(x-1)
C.y=
3
(x-1)或y=-
3
(x-1)
D.y=
2
2
(x-1)或y=-
2
2
(x-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P(0,2),抛物线C:y2=2px(p>0)的焦点为F,线段PF与抛物线C的交点为M,过M作抛物线准线的垂线,垂足为Q.若∠PQF=90°,则p=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列说法中,正确的有______.
①若点P(x0,y0)是抛物线y2=2px上一点,则该点到抛物线的焦点F的距离是|PF|=x0+
P
2

②方程x2+y2-2x+1=0表示的图形是圆;
③设定圆O上有一动点A,圆O内一定点M,AM的垂直平分线与半径OA的交点为点P,则P的轨迹为一椭圆;
④某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=13;
⑤双曲线
y2
49
-
x2
25
=-1的渐近线方程是y=±
5
7
x.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线y2=4x的准线也是双曲线
x2
a2
-
4y2
3
=1
的一条准线,则该双曲线的渐近线方程为(  )
A.y=±2xB.y=±
2
2
x
C.y=±
3
x
D.y=±
2
x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,河道上有一座抛物线型拱桥,在正常水位时,拱圈最高点距水面为8m,拱圈内水面宽16m.,为保证安全,要求通过的船顶部(设为平顶)与拱桥顶部在竖直方向上高度之差至少要有0.5m.
(1)一条船船顶部宽4m,要使这艘船安全通过,则船在水面以上部分高不能超过多少米?
(2)近日因受台风影响水位暴涨2.7m,为此必须加重船载,降低船身,才能通过桥洞.试问:一艘顶部宽4
2
m,在水面以上部分高为4m的船船身应至少降低多少米才能安全通过?

查看答案和解析>>

同步练习册答案