精英家教网 > 高中数学 > 题目详情
现有A,B,C,D四个长方体容器,A,B的底面积均为x2,高分别为x,y;C,D的底面积均为y2,高分别为x,y(其中x≠y).现规定一种两人的游戏规则:每人从四种容器中取两个盛水,盛水多者为胜.问先取者在未能确定x与y大小的情况下有没有必胜的方案?若有的话,有几种?
考点:不等式比较大小
专题:不等式的解法及应用
分析:当x>y时,利用不等式的性质可得:x3>x2y>xy2>y3,即A>B>C>D;当x<y时,同理可得:y3>y2x>yx2>x3,即D>C>B>A;又x3+y3-(xy2+x2y)>0.即可得出.
解答: 解:当x>y时,则x3>x2y>xy2>y3,即A>B>C>D;
当x<y时,则y3>y2x>yx2>x3,即D>C>B>A;
又x3+y3-(xy2+x2y)=(x3-x2y)+(y3-xy2)=(x-y)2(x+y)>0.
∴在不知道x,y的大小的情况下,取A,D能够稳操胜券,其他的都没有必胜的把握.
故只有1种,就是取A,D.
点评:本题考查了不等式的基本性质、“作差法”,考查了推理能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x、y满足不等式组
x-2y+1≥0
2x-y-1≤0
4x+2y+1≤0
x2+y2≤1
,则3x+y的取值范围为(  )
A、[-3,-
3
8
]
B、[-3,-
9
10
]
C、[-
10
,-
9
10
]
D、[-
10
,-
3
8
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知球的体积为36π,球的表面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设n=∫0 
n
2
4cosxdx,则二项式(x-
1
x
n的展开式的常数项是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=3sin(-2x+
π
6
)的单调递增区间为(  )(其中k∈Z)
A、[-kπ-
π
6
,-kπ+
π
3
]
B、[2kπ-
3
,2kπ-
π
3
]
C、[kπ-
3
,kπ-
π
6
]
D、[kπ-
π
6
,kπ+
π
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知点A(1,4),B(-2,3),C(2,-1).
(I)求
AB
AC
|AB
+
AC|

(Ⅱ)设实数t满足(
AB
-t
OC
)⊥
OC
,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的圆心在直线2x-y-7=0上并与y轴交于两点A(0,-4),B(0,-2),求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

x>3
y>3
x+y>6
x•y>9
成立的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(1-x)+lg(1+x)+x4-2x2
(1)求函数f(x)的定义域并判定函数f(x)的奇偶性;
(2)求函数f(x)的值域.

查看答案和解析>>

同步练习册答案