精英家教网 > 高中数学 > 题目详情
已知实数x、y满足不等式组
x-2y+1≥0
2x-y-1≤0
4x+2y+1≤0
x2+y2≤1
,则3x+y的取值范围为(  )
A、[-3,-
3
8
]
B、[-3,-
9
10
]
C、[-
10
,-
9
10
]
D、[-
10
,-
3
8
]
考点:简单线性规划
专题:计算题,作图题,不等式的解法及应用
分析:由题意作出其平面区域,令z=3x+y化为y=-3x+z,z相当于直线y=-3x+z的纵截距,由几何意义可得.
解答: 解:由题意作出其平面区域,
令z=3x+y化为y=-3x+z,z相当于直线y=-3x+z的纵截距,
4x+2y+1=0
y=2x-1
解得,A(
1
8
-
3
4
),
此时z=-
3
8

y=
1
3
x
x2+y2=1
解得,
x=-
3
10
10
y=-
10
10

此时z=-
10

则3x+y的取值范围为[-
10
,-
3
8
].
故选D.
点评:本题考查了简单线性规划,作图要细致认真,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,2an+1=2an+1,n∈N+.数列{bn}的前n项和为Sn,Sn=9-(
1
3
)
n-2
,n∈N+
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=an•bn,n∈N+.求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{bn}满足:bn+1=2bn+2,bn=an+1-an,且a1=2,a2=4.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)求数列{an的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,两矩形ABCD、ABEF所在平面互相垂直,DE与平面ABCD及平面ABEF所成角分别为30°、45°,M、N分别为DE与DB的中点,且MN=1,线段AB的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程(
1
3
)|x|-a-1=0
有解,则a的取值范围是(  )
A、0<a≤1B、-1<a≤0
C、a≥1D、a>0

查看答案和解析>>

科目:高中数学 来源: 题型:

p为椭圆
x2
9
+
y2
4
=1上的一点,F1,F2分别为左、右焦点,且∠F1PF2=60° 则|PF1|•|PF2|=(  )
A、
8
3
B、
16
3
C、
4
3
3
D、
8
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知首项都是1的数列{an},{bn}(bn≠0,n∈N*)满足anbn+1-an+1bn+3bnbn+1=0
(I)令Cn=
an
bn
,求数列{cn}的通项公式;
(Ⅱ)若数列{bn}为各项均为正数的等比数列,且b32=4b2•b6,求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,图象关于y轴对称的是(  )
A、y=log2x
B、y=
x
C、y=x|x|
D、y=x -
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

现有A,B,C,D四个长方体容器,A,B的底面积均为x2,高分别为x,y;C,D的底面积均为y2,高分别为x,y(其中x≠y).现规定一种两人的游戏规则:每人从四种容器中取两个盛水,盛水多者为胜.问先取者在未能确定x与y大小的情况下有没有必胜的方案?若有的话,有几种?

查看答案和解析>>

同步练习册答案