科目:高中数学 来源:2013-2014学年福建省高考考前模拟文科数学试卷(解析版) 题型:解答题
如图,设椭圆
的左右焦点为
,上顶点为
,点
关于
对称,且![]()
(1)求椭圆
的离心率;
(2)已知
是过
三点的圆上的点,若
的面积为
,求点
到直线
距离的最大值。
![]()
查看答案和解析>>
科目:高中数学 来源:2013-2014学年福建省厦门市高三5月适应性考试理科数学试卷(解析版) 题型:解答题
如图1,直角梯形
中,
,
,
,点
为线段
上异于
的点,且
,沿
将面
折起,使平面
平面
,如图2.
(1)求证:
平面
;
(2)当三棱锥
体积最大时,求平面
与平面
所成的锐二面角的余弦值.
![]()
查看答案和解析>>
科目:高中数学 来源:2013-2014学年福建省厦门市高三5月适应性考试文科数学试卷(解析版) 题型:选择题
设向量
与
满足
,
在
方向上的投影为
,若存在实数
,使得
与
垂直,则
=( )
A.
B.1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源:2013-2014学年福建省三明市高三5月质量检查理科数学试卷(解析版) 题型:解答题
已知在平面直角坐标系
中,圆
的方程为
.以原点
为极点,以
轴正半轴为极轴,且与直角坐标系取相同的单位长度,建立极坐标系,直线
的极坐标方程为
.
(1)求直线
的直角坐标方程和圆
的参数方程;
(2)求圆
上的点到直线
的距离的最小值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年福建省三明市高三5月质量检查理科数学试卷(解析版) 题型:填空题
对于集合
,如果定义了一种运算“
”,使得集合
中的元素间满足下列4个条件:
(ⅰ)
,都有
;
(ⅱ)
,使得对
,都有
;
(ⅲ)
,
,使得
;
(ⅳ)
,都有
,
则称集合
对于运算“
”构成“对称集”.
下面给出三个集合及相应的运算“
”:
①
,运算“
”为普通加法;
②
,运算“
”为普通减法;
③
,运算“
”为普通乘法.
其中可以构成“对称集”的有 .(把所有正确的序号都填上)
查看答案和解析>>
科目:高中数学 来源:2013-2014学年福建省三明市高三5月质量检查文科数学试卷(解析版) 题型:解答题
(已知抛物线
(
)的准线与
轴交于点
.
(1)求抛物线的方程,并写出焦点坐标;
(2)是否存在过焦点的直线
(直线与抛物线交于点
,
),使得三角形
的面积
?若存在,请求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年甘肃省武威市高三数学专题训练选择填空限时练六(解析版) 题型:选择题
已知点F1、F2分别是双曲线
=1(a>0,b>0)的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2是锐角三角形,则该双曲线离心率的取值范围是( )
A.(1,
) B.(
,2
)
C.(1+
,+∞) D.(1,1+
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com