精英家教网 > 高中数学 > 题目详情
已知{an}是等差数列,其前n项和为Sn;{bn}是等比数列,且a1=b1=1,a4+b4=-20,S4-b4=43.
(1)求数列{an}与{bn}的通项公式;
(2)求数列{an•bn}的前n项和Tn
考点:等差数列与等比数列的综合
专题:综合题,等差数列与等比数列
分析:(1)利用a1=b1=1,a4+b4=-20,S4-b4=43,建立方程,求出公差、公比,即可求数列{an}与{bn}的通项公式;
(2)利用错位相减法,即可求数列{an•bn}的前n项和Tn
解答: 解:(1)设公差为d,公比为q,由题意得
1+3d+q3=-20
4+6d-q3=43

解之得:
d=2
q=-3
,从而an=2n-1,bn=(-3)n-1.…(5分)
(2)Tn=1•(-3)0+3•(-3)1+5•(-3)2+…+(2n-1)•(-3)n-1
①×(-3)得:-3Tn=1•(-3)1+3•(-3)2+5•(-3)3+…+(2n-1)•(-3)n
①-②得:4Tn=1•(-3)0+2•(-3)1+2•(-3)2+…+2•(-3)n-1-(2n-1)•(-3)n
=2•(-3)0+2•(-3)1+2•(-3)2+…+2•(-3)n-1-(2n-1)•(-3)n-1
=2•
1-(-3)n
1-(-3)
-(2n-1)•(-3)n-1=-
(4n-1)•(-3)n+1
2
…(11分)
Tn=-
(4n-1)•(-3)n+1
8
…(12分)
点评:本题考查等差数列、等比数列的通项,考查数列的求和,确定数列的通项是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数g(x)=2x+5x的零点所在的一个区间是(  )
A、(0,1)
B、(1,2)
C、(-1,0)
D、(-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-3,1)是椭圆
x2
36
+
y2
4
=1内的一点,点M为椭圆上的任意一点(除短轴端点外),O为原点.过此点A作直线l与椭圆相交于C、D两点,且A点恰好为弦CD的中点.再把点M与短轴两端点B1、B2连接起来并延长,分别交x轴于P、Q两点.
(1)求弦CD的长度;
(2)求证:|OP|•|OQ|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,当n≥2时,其前n项Sn满足2SnSn-1=Sn-1-Sn
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
Sn
2n+1
,求数列{bn}的前n项和Tn
(Ⅲ)是否存在自然数m,使得对任意n∈N*,都有Tn
1
4
(m-519)成立?若存在,求出m的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

求经过点A(-3,0),且与圆C:(x-3)2+y2=64内切的圆的圆心M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线C:x2=2py(p>0)的焦点F作直线l与抛物线C交于A,B两点,当点A的纵坐标为1时,|AF|=2.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若直线l的斜率为2,问抛物线C上是否存在一点M,使得MA⊥MB?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-
4
x
+clnx,其中c∈R,
(1)当c=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论f(x)的单调性;
(3)若f(x)有两个极值点x1和x2,记过点A(x1,f(x1))、B(x2,f(x2))的直线的斜率为k,问是否存在c,使得k=2+c?若存在,求出c的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C过两个点A(
5
2
,2
3
),B(
5
2
2
,2
2
).
(1)求椭圆C的标准方程;
(2)过点M(2,1)作直线l,交椭圆C于P、Q两点,且M为P、Q的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A,B,C的对边,且满足4cos2
A
2
-cos2(B+C)=
7
2

(1)求角A的大小;
(2)若b+c=3,当a取最小值时,判断△ABC的形状.

查看答案和解析>>

同步练习册答案