精英家教网 > 高中数学 > 题目详情
下列哪组中的函数f(x)与g(x)相等(  )
A、f(x)=x2g(x)=(
x
)4
B、f(x)=x+1,g(x)=
x2
x
+1
C、f(x)=x,g(x)=
3x3
D、f(x)=
(x+1)(x+2)
,g(x)=
x+1
x+2
考点:判断两个函数是否为同一函数
专题:函数的性质及应用
分析:根据两个函数的定义域相同,对应关系也相同,判断是相等函数.
解答: 解:对于A,f(x)=x2(x∈R),g(x)=(
x
)
4
=x2(x≥0),它们的定义域不同,不是相等函数;
对于B,f(x)=x+1(x∈R),g(x)=
x2
x
+1=x+1(x≠0),它们的定义域不同,不是相等函数;
对于C,f(x)=x(x∈R),g(x)=
3x3
=x(x∈R),它们的定义域相同,对应关系也相同,是相等函数;
对于D,f(x)=
(x+1)(x+2)
(x≤-2x≥-1),g(x)=
x+1
x+2
=
(x+1)(x+2)
(x≥-1),
它们的定义域不同,不是相等函数;
故选:C.
点评:本题考查了判断两个函数是否为同一函数的问题,解题时应判断它们的定义域是否相同,对应关系是否也相同,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x),g(x)的定义域分别为F,G,且F⊆G,若对任意x∈F,都有g(x)=f(x),则称g(x)为f(x)在G上的一个“延拓函数”,已知函数f(x)=2x(x≤0),若g(x)为f(x)在R上延拓函数,且g(x)是偶函数,则函数g(x)的解析式是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=log
1
2
3,b=(
1
2
)
-
1
2
,c=log32,则a,b,c之间的大小关系为(  )
A、a<c<b
B、a<b<c
C、c<a<b
D、c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax7-bx5+cx3+2,且f(-5)=m,则f(5)的值为(  )
A、mB、4C、m+2D、4-m

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,阴影部分是由y=x2,x=2及x轴围成的,则阴影部分的面积为(  )
A、8
B、
8
3
C、
4
3
D、
16
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+
π
6
)+sin(2x-
π
6
)-cos2x+a(a∈R,a为常数).
(1)求函数f(x)的最小正周期和单调递增区间;
(2)若x∈[0,
π
2
]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>1,函数f(x)=x+
a2
4x
,g(x)=x-lnx,若对任意的x1,x2∈[1,e],都有f(x1)≥g(x2)成立,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinx,cosx),向量
b
=(cosx,cosx),函数f(x)=2
a
b

(1)求f(
4
)的值;
(2)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知空间四边形OABC中,∠AOB=∠BOC=∠AOC,且OA=OB=OC,M、N分别是OA、BC的中点,G是MN的中点,求证:OG⊥BC.

查看答案和解析>>

同步练习册答案