精英家教网 > 高中数学 > 题目详情
已知:函数f(x)=2sin(2x-
π
3

(1)求函数的对称中心的坐标,对称轴方程;
(2)当x∈[0,π]时,求函数f(x)的单调递增区间.
考点:正弦函数的单调性,正弦函数的定义域和值域
专题:三角函数的图像与性质
分析:(1)分别令2x-
π
3
=kπ,2x-
π
3
=kπ+
π
2
解x可得所求;(2)令2kπ-
π
2
≤2x-
π
3
≤2kπ+
π
2
,解得x和[0,π]取交集可得.
解答: 解:(1)令2x-
π
3
=kπ可解得x=
2
+
π
6

2x-
π
3
=kπ+
π
2
可解得x=
2
+
12

∴函数图象的对称中心为:(
2
+
π
6
,0)
,k∈Z,
对称轴方程为:x=
2
+
12
,k∈z

(2)令2kπ-
π
2
≤2x-
π
3
≤2kπ+
π
2

解得kπ-
π
12
≤x≤kπ+
12
,k∈Z
∴当x∈[0,π]时,函数f(x)的单调递增区间为为:[0,
12
)和(
11π
12
,π]
点评:本题考查正弦函数的单调性和对称性,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

宇宙深处有一颗美丽的行星,这个行星是一个半径为r(r>0)的球.人们在行星表面建立了与地球表面同样的经纬度系统.已知行星表面上的A点落在北纬60°,东经30°;B点落在东经30°的赤道上;C点落在北纬60°,东经90°.在赤道上有点P满足PB两点间的球面距离等于AB两点间的球面距离.
(1)求AC两点间的球面距离;
(2)求P点的经度;
(3)求AP两点间的球面距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
1
2
x2-bx(b为常数).
(Ⅰ)求函数f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)设h(x)=f(x)+g(x),若函数h(x)在定义域上存在单调减区间,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知半径为5的圆的圆心C在x轴上,圆心C的横坐标是整数,且圆C与直线4x+3y-33=0相切.
(1)求圆C的方程;
(2)设直线ax-y-7=0与圆C相交于A,B两点,且满足CA⊥CB,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设P:指数函数y=ax在x∈R内单调递减;Q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果P为真,Q为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(-
3
,1),
b
=(
1
2
3
2
),
c
=-
1
4
a
+m
b
d
=cos2x
a
+sinx
b
,f(x)=
c
d
,x∈R.
(1)当m=2时,求y=f(x)的取值范围; 
(2)设g(x)=f(x)-m2+2m+5,是否存在实数m,使得y=g(x)有最大值2,若存在,求出所有满足条件的m值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,∠CDA=∠DAB=90°,PD⊥底面ABCD,PD=AD,CD=1,AB=2,E是PB中点,点E在平面ACP上的射影是△ACP
的重心G.
(1)求PB与平面ACP所成角的正弦值;
(2)求二面角B-AC-E的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x>1,求y=
x2-2x+2
x-1
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,异面直线A1B和B1D1所成的角的大小为
 

查看答案和解析>>

同步练习册答案