精英家教网 > 高中数学 > 题目详情
12.“a=0”是“函数f(x)=sinx-$\frac{1}{x}$+a为奇函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 先根据奇函数的定义判断出a=0时,为奇函数,再根据奇函数的定义判断当为奇函数时,a=0,故可以判断为充要条件.

解答 解:f(x)的定义域为{x|x≠0},关于原点对称
当a=0时,f(x)=sinx-$\frac{1}{x}$,
f(-x)=sin(-x)-(-$\frac{1}{x}$)=-sinx+$\frac{1}{x}$=-(sinx-$\frac{1}{x}$)=-f(x),故f(z)为奇函数,
当函数f(x)=sinx-$\frac{1}{x}$+a为奇函数时,f(-x)+f(x)=0
又f(-x)+f(x)=sin(-x)-(-$\frac{1}{x}$)+a+sinx-$\frac{1}{x}$+a=2a,故a=0
所以““a=0”是“函数f(x)=sinx-$\frac{1}{x}$+a为奇函数”的充要条件,
故选C

点评 考查判断一个条件是另一个条件的什么条件时,要从两个方面判断:充分条件,和必要条件,掌握函数的奇偶性,以及需理解充分条件、必要条件、充分不必要条件的概念.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若an=3an-1+3n-1,n≥2,n∈N+,a1=5,若{$\frac{{a}_{n}+t}{{3}^{n}}$}是公差为1的等差数列,则t=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等比数列{an}的前n项和为Sn,满足Sn=1-an(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{{a_n}+1}}-\frac{1}{{{a_{n+1}}-1}}$,数列{bn}的前n项和为Tn,求证:对于任意的n∈N*,2n-$\frac{1}{4}<{T_n}$≤2n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知某程序框图如图所示,则执行该程序后输出的结果是(  )
A.-1B.-2C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在平面直角坐标系xOy中,已知$x_1^2-ln{x_1}-{y_1}=0$,x2-y2-2=0,则${({x_1}-{x_2})^2}+{({y_1}-{y_2})^2}$的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知△ABC的面积为12,P是△ABC所在平面上的一点,满足$\overrightarrow{PA}+\overrightarrow{PB}+2\overrightarrow{PC}=3\overrightarrow{AB}$,则△ABP的面积为(  )
A.3B.4C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某年数学竞赛请来一位来自X星球的选手参加填空题比赛,共10道题目,这位选手做题有一个古怪的习惯:先从最后一题(第10题)开始往前看,凡是遇到会的题就作答,遇到不会的题目先跳过(允许跳过所有的题目),一直看到第1题;然后从第1题开始往后看,凡是遇到先前未答的题目就随便写个答案,遇到先前已答的题目则跳过(例如,他可以按照9,8,7,4,3,2,1,5,6,10的次序答题),这样所有的题目均有作答,设这位选手可能的答题次序有n种,则n的值为(  )
A.512B.511C.1024D.1023

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)的定义域为实数集R,及整数k、T;
(1)若函数f(x)=2xsin(πx),证明f(x+2)=4f(x);
(2)若f(x+T)=k•f(x),且f(x)=axφ(x)(其中a为正的常数),试证明:函数φ(x)为周期函数;
(3)若f(x+6)=$\sqrt{2}$f(x),且当x∈[-3,3]时,f(x)=$\frac{1}{10}x$(x2-9),记Sn=f(2)+f(6)+f(10)+…+f(4n-2),n∈N+,求使得S1、S2、S3、…、Sn小于1000都成立的最大整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,已知tan$\frac{A+B}{2}$=sinC,给出以下四个结论:①$\frac{tanA}{tanB}$=1;②1<sinA+sinB$≤\sqrt{2}$;③sin2A+cos2B=1;④cos2A+cos2B=sin2C,其中正确的结论是②④.(写出所有正确结论的序号).

查看答案和解析>>

同步练习册答案