精英家教网 > 高中数学 > 题目详情
计算:(1+2-
1
32
)(1+2-
1
16
)(1+2-
1
8
)(1+2-
1
4
)(1+2-
1
2
).
考点:有理数指数幂的运算性质
专题:计算题
分析:在等式两边同时乘以(1-2-
1
32
),利用平方差公式进行化简求解,从而可求出所求.
解答: 解:原式=(1-2-
1
32
)(1+2-
1
32
)(1+2-
1
16
)(1+2-
1
8
)(1+2-
1
4
)(1+2-
1
2
(1-2-
1
32
)-1

=(1-2-
1
16
)(1+2-
1
16
)(1+2-
1
8
)(1+2-
1
4
)(1+2-
1
2
(1-2-
1
32
)-1

=…
=
1
2
(1-2-
1
32
)-1
点评:本题主要考查了有理指数幂的运算性质,解题的关键是陪凑成平方差公式,同时考查了学生分析问题和解决问题的能力,以及运算求解的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一双曲线与椭圆4x2+y2=64有相同的焦点,且该双曲线的实轴长与虚轴长之比为
3
:3,求该双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

共点的四条直线最多能确定
 
个平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程x2+(1+a)x-2a=0两根分别在(0,1)与(1,2)内,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各组函数中,表示相等函数的是(  )
A、y=|x|与y=(
x
2
B、y=1与y=x0
C、y=x与y=
3x3
D、y=x-3与y=
x2-9
x+3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-ax-3a
在[2,+∞)上单调递增,则a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的奇函数f(x)与偶函数g(x)满足f(x)+g(x)=x2+3x+1,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义行列式运算
.
a1a2
b1b2
.
=a1b2-a2b2,将函数f(x)=
.
3
sin2x
1cos2x
.
的图象向左平移t(t>0)个单位,所得图象对应的函数为奇函数,则t的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

假设关于某种设备的使用年限x(年)与所支出的维修费用y(万元)有如下统计资料:
x23456
y235.56.58
(1)求出y关于x的线性回归方程;
(2)估计使用年限期完成为10时的维修费用y的值.

查看答案和解析>>

同步练习册答案