精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为 (θ为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcosθ=﹣2.
(Ⅰ)求C1和C2在直角坐标系下的普通方程;
(Ⅱ)已知直线l:y=x和曲线C1交于M,N两点,求弦MN中点的极坐标.

【答案】解:(Ⅰ)由 ,得 (x﹣1)2+(y﹣2)2=cos2θ+sin2θ=1,
所以C1的普通方程为(x﹣1)2+(y﹣2)2=1.
因为x=ρcosθ,所以C2的普通方程为x=﹣2.
(Ⅱ)由
得x2﹣3x+2=0,
,弦MN中点的横坐标为 ,代入y=x得纵坐标为
弦MN中点的极坐标为:
【解析】(Ⅰ)消调参数θ,即可得到普通方程,由极坐标方程即可直接得到普通方程;(Ⅱ)根据韦达定理,即可求出弦MN中点的坐标,再化为极坐标即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,且此函数图象过点(1,5).
(1)求实数m的值;
(2)判断f(x)奇偶性;
(3)讨论函数f(x)在[2,+∞)上的单调性?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足:f′(x)﹣f(x)=xex , 且f(0)= ,则 的最大值为(
A.0
B.
C.1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)所示,在直角梯形ABCD中, ,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图(2)所示.
(1)证明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=f(x)导函数的图象如图所示,则下列说法错误的是( )

A.(﹣1,3)为函数y=f(x)的递增区间
B.(3,5)为函数y=f(x)的递减区间
C.函数y=f(x)在x=0处取得极大值
D.函数y=f(x)在x=5处取得极小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3﹣3x+1,x∈[﹣2,2]的最大值为M,最小值为m,则M+m=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知U=R,M={x|﹣l≤x≤2},N={x|x≤3},则(UM)∩N=(
A.{x|2≤x≤3}
B.{x|2<x≤3}
C.{x|x≤﹣1,或2≤x≤3}
D.{x|x<﹣1,或2<x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a1=1,对任意的n∈N* , 都有an>0,且nan+12﹣(2n﹣1)an+1an﹣2an2=0设M(x)表示整数x的个位数字,则M(a2017)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,平面区域D由所有满足 (1≤λ≤a,1≤μ≤b)的点P构成,其面积为8,则4a+b的最小值为(
A.13
B.12
C.7
D.6

查看答案和解析>>

同步练习册答案