精英家教网 > 高中数学 > 题目详情

【题目】定义在R上的函数f(x)满足:f′(x)﹣f(x)=xex , 且f(0)= ,则 的最大值为(
A.0
B.
C.1
D.2

【答案】D
【解析】解:令F(x)= ,则F′(x)= = =x,则F(x)= x2+c,
∴f(x)=ex x2+c),
∵f(0)=
∴c=
∴f(x)=ex x2+ ),
∴f′(x)=ex x2+ )+xex
=
设y=
则yx2+y=x2+2x+1,
∴(1﹣y)x2+2x+(1﹣y)=0,
当y=1时,x=0,
当y≠1时,要使方程有解,
则△=4﹣4(1﹣y)2≥0,
解得0≤y≤2,
故y的最大值为2,
的最大值为2,
故选:D.
先构造函数,F(x)= ,根据题意求出f(x)的解析式,即可得到 = ,再根据根的判别式即可求出最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是(  )
A.y=sinx
B.y=lnx
C.y=ex
D.y=x3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以坐标原点O为圆心的单位圆与x轴正半轴相交于点A,点B,P在单位圆上,且B(﹣ ),∠AOB=α.

(1)求 的值;
(2)若四边形OAQP是平行四边形,
(i)当P在单位圆上运动时,求点O的轨迹方程;
(ii)设∠POA=θ(0≤θ≤2π),点Q(m,n),且f(θ)=m+ n.求关于θ的函数f(θ)的解析式,并求其单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣9x,函数g(x)=3x2+a. (Ⅰ)已知直线l是曲线y=f(x)在点(0,f(0))处的切线,且l与曲线y=g(x)相切,求a的值;
(Ⅱ)若方程f(x)=g(x)有三个不同实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 在点(1,f(1))处的切线方程为x+y=2. (Ⅰ)求a,b的值;
(Ⅱ)若对函数f(x)定义域内的任一个实数x,都有xf(x)<m恒成立,求实数m的取值范围.
(Ⅲ) 求证:对一切x∈(0,+∞),都有3﹣(x+1)f(x)> 成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】锐角△ABC中,其内角A、B满足:2cosA=sinB﹣ cosB.
(1)求角C的大小;
(2)D为AB的中点,CD=1,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD为正方形,PA=AB,该四棱锥被一平面截去一部分后,剩余部分的三视图如图,则剩余部分体积与原四棱锥体积的比值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为 (θ为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcosθ=﹣2.
(Ⅰ)求C1和C2在直角坐标系下的普通方程;
(Ⅱ)已知直线l:y=x和曲线C1交于M,N两点,求弦MN中点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.
(Ⅰ)证明:SD⊥平面SAB;
(Ⅱ)求AB与平面SBC所成的角的大小.

查看答案和解析>>

同步练习册答案