精英家教网 > 高中数学 > 题目详情
(2010•抚州模拟)若(1+x)+(1+x)2+…+(1+x)n=a0+a1(1-x)+a2(1-x)2+…+an(1-x)n则a0-a1+a2-…+(-1)nan等于(  )
分析:利用已知的表达式,通过x=2,通过等差数列求和,即可得到结果.
解答:解:因为(1+x)+(1+x)2+…+(1+x)n=a0+a1(1-x)+a2(1-x)2+…+an(1-x)n
当x=2时,上式化为:3+32+…+3n=a0-a1+a2-…+(-1)n an
则a0-a1+a2-…+(-1)nan=
3(1-3n)
1-3
=
3
2
(3n-1)

故选D.
点评:本题是基础题,考查二项式定理系数的性质,赋值法的应用,数列求和,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•抚州模拟)设随机变量ξ~N(μ,σ2),对非负数常数k,则P(|ξ-μ|≤kσ)的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)在斜三棱柱ABC-A1B1C1中,AB=BC=2,∠ABC=120°,又顶点A1在底面ABC上的射影落在AC上,侧棱AA1与底面ABC成60°角,D为AC的中点.
(1)求证:BD⊥AA1
(2)如果二面角A1-BD-C1为直二面角,试求侧棱CC1与侧面A1ABB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)已知:数列{an},{bn}中,a1=0,b1=1,且当n∈N*时,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列.
(1)求数列{an},{bn}的通项公式;
(2)求最小自然数k,使得当n≥k时,对任意实数λ∈[0,1],不等式(2λ-3)bn≥(2λ-4)an+(λ-3)恒成立;
(3)设dn=
1
b1
+
1
b2
+…+
1
bn
(n∈N*),求证:当n≥2都有dn2>2(
d2
2
+
d3
3
+…+
dn
n
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)设f-1(x)是函数f(x)=2x-(
1
3
x+x的反函数,则f-1(x)>1成立的x的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)若集合A={x∈Z+|
x
2
Z+},B={
x
2
Z+|x∈Z+}
,则A∩B等于(  )

查看答案和解析>>

同步练习册答案