精英家教网 > 高中数学 > 题目详情

【题目】某学校为了了解该校学生对于某项运动的爱好是否与性别有关,通过随机抽查110名学生,得到如下2×2的列联表:

喜欢该项运动

不喜欢该项运动

总计

40

20

60

20

30

50

总计

60

50

110

由公式K2= ,算得K2≈7.61
附表:

p(K2≥k0

0.025

0.01

0.005

k0

5.024

6.635

7.879

参照附表,以下结论正确是( )
A.有99.5%以上的把握认为“爱好该项运动与性别有关”
B.有99.5%以上的把握认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”

【答案】C
【解析】解:由题意知本题所给的观测值,K2≈7.61>6.635,

∴这个结论有0.010的机会出错,

即有99%以上的把握认为“爱好体育运动与性别有关”.

故答案为:C.

对照临界值可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2为f(x)的极值点,求实数a的值;
(2)若y=f(x)在[3,+∞)上为增函数,求实数a的取值范围;
(3)当a=﹣ 时,方程f(1﹣x)= 有实根,求实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查中小学课外使用互联网的情况,教育部向华东、华北、华南和西部地区60所中小学发出问卷份, 名学生参加了问卷调查,并根据所得数据画出样本的频率分布直方图(如图).

(1)要从这名中小学中用分层抽样的方法抽取名中小学生进一步调查,则在(小时)时间段内应抽出的人数是多少?

(2)若希望的中小学生每天使用互联网时间不少于(小时),请估计的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】英格兰足球超级联赛,简称英超,是英国足球最高等级的职业足球联赛,也是世界最高水平的职业足球联赛之一,目前英超参赛球队有20个,在2014-2015赛季结束后将各队积分分成6段,并绘制出了如图所示的频率分布直方图(图中各分组区间包括左端点,不包括右端点,如第一组表示积分在[30,40)内).根据图中现有信息,解答下面问题:

(Ⅰ)求积分在[40,50)内的频率,并补全这个频率分布直方图;

(Ⅱ)从积分在[40,60)中的球队中任选取2个球队,求选取的2个球队的积分在频率分布直方图中处于不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,BC=a,AC=b,且ab是方程的两根,2cos(A+B)=1

(1)求∠C的度数;

(2)求AB的长;

(3)求△ABC的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)为奇函数,当x≥0时,f(x)= .g(x)=
(1)求当x<0时,函数f(x)的解析式,并在给定直角坐标系内画出f(x)在区间[﹣5,5]上的图象;(不用列表描点)

(2)根据已知条件直接写出g(x)的解析式,并说明g(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四面体ABCD的顶点都在球O表面上,且AB=BC=AC=2 ,DA=DB=DC=2,过AD作相互垂直的平面α、β,若平面α、β截球O所得截面分别为圆M、N,则(
A.MN的长度是定值
B.MN长度的最小值是2
C.圆M面积的最小值是2π
D.圆M、N的面积和是定值8π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足f(x)=f( ),当x∈[1,4]时,f(x)=lnx,若在区间x∈[ ,4]内,函数g(x)=f(x)﹣ax与x轴有三个不同的交点,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】化简

1

2

【答案】(1) ;(2) .

【解析】试题分析:(1)切化弦可得三角函数式的值为-1

(2)结合三角函数的性质可得三角函数式的值为

试题解析:

(1)tan70°cos10°( tan20°﹣1)

=cot20°cos10°( ﹣1)

=cot20°cos10°(

=×cos10°×(

=×cos10°×(

=×(﹣

=﹣1

(2)∵(1+tan1°)(1+tan44°)=1+(tan1°+tan44°)+tan1°tan44°

=1+tan(1°+44°)[1﹣tan1°tan44°]+tan1°tan44°=2.

同理可得(1+tan2°)(1+tan43°)

=(1+tan3°)(1+tan42°)

=(1+tan4°)(1+tan41°)=…=2,

=

点睛:三角函数式的化简要遵循“三看”原则:一看角,这是重要一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式 ;二看函数名称,看函数名称之间的差异,从而确定使用的公式,常见的有切化弦;三看结构特征,分析结构特征,可以帮助我们找到变形的方向,如遇到分式要通分等.

型】解答
束】
18

【题目】平面内给定三个向量

1)求

2)求满足的实数.

3)若,求实数.

查看答案和解析>>

同步练习册答案