已知等比数列的公比为,是的前项和.
(1)若,,求的值;
(2)若,,有无最值?并说明理由;
(3)设,若首项和都是正整数,满足不等式:,且对于任意正整数有成立,问:这样的数列有几个?
(1);(2)有最大值为,最小值为;(3)个.
解析试题分析:(1)根据等比数列前项和公式,可见要对分类讨论,当时,,,,从而不难求出;当时,,,,即可利用根据定义求出;(2)根据题意可求出数列的前项和,要求出的最值,可见要分和两种情况进行讨论,当时利用单调性即可求出的最值情况,当时,由于将随着的奇偶性正负相间,故又要再次以的奇偶数进行讨论,再利用各自的单调性即可求出的最值; (3)首先由含有的绝对值不等式可求出的范围,再用表示出,由单调性不难求出的最小值,即,故并分别代入进行,依据就可求出的范围,最后结合是正整数,从而确定出的个数.
试题解析:(1)当时,,, 2分
当时,,, 4分
所以(可以写成;
(2)若,,则,
当时,,所以随的增大而增大,
而,此时有最小值为1,但无最大值. 6分
当时,
①时,,所以随的增大而增大,
即是偶数时,,即:; 8分
②时,,
即:,所以随的增大而减小,
即是奇数时,,即:;
由①②得:
科目:高中数学 来源: 题型:解答题
已知数列{an}满足:a1=1,a2=2,2an=an-1+an+1(n≥2,n∈N*),数列{bn}满足b1=2,anbn+1=2an+1bn.
(1)求数列{an}的通项an;
(2)求证:数列为等比数列,并求数列{bn}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在数列{an}中,a1=1,{an}的前n项和Sn满足2Sn=an+1.
(1)求数列{an}的通项公式;
(2)若存在n∈N*,使得λ≤,求实数λ的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知是等比数列的前项和,、、成等差数列,且.
(1)求数列的通项公式;
(2)是否存在正整数,使得?若存在,求出符合条件的所有的集合;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知各项均为正数的数列的前项和为,数列的前项和为,且.
⑴证明:数列是等比数列,并写出通项公式;
⑵若对恒成立,求的最小值;
⑶若成等差数列,求正整数的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com